User's Guide

Rev.A1

FIRMWARE REVISIONS This manual applies directly to instruments that have the firmware **Rev. A7.0**

Applent Instruments Ltd No.61-3, Baolong International, Chahua Road, Zhonglou District , Changzhou City, Jiangsu Province, China [213014]

Tel: 0519-88805550 Fax: 0519-86922220

http://www.applent.com

Sales Email: <u>sales@applent.com</u> Tech Email: <u>tech@applent.com</u> ©2005-2019 Applent Instruments Ltd.

Safety Summary

WARNING DANGER: When you notice any of the following abnormal conditions, terminate operation immediately and disconnect the power cord. Contact Applent Instruments Sales for repair. Failure to do so may result in fire or potential electrical shock to operators.

- Instrument is operating abnormally.
- Instrument produces abnormal noise, odor, smoke or flash during operation.
- Instrument generates high temperature or electric shock during operation.
- Power cord, power switch, or power outlet is damaged.
- Impurities or liquids flow into the instrument.

Safety Information

WARNING ADANGER: To avoid possible electric shock and personal safety, follow guidelines in below.

Disclaimer	Users should read the following safety information carefully before starting to use the instrument. Applent Instruments will not be held liable for any personal safety and property damage caused by user's failure to comply with the following terms.
Ground The instrument	To avoid electric shock hazard, the instrument chassis and cabinet must be connected to a safety earth ground by the supplied power cable with earth blade.
DO NOT Operate in an Explosive Atmosphere	Do not use the instrument in a flammable or explosive atmosphere, steam or dusty environment. The use of any electronic device in such an environment is an adventure for personal safety.
DO NOT Open instrument enclosure	Non-professional maintenance personnel should not open the instrument case in an attempt to repair the instrument. The instrument still has charge after a period of shutdown, which may pose a shock hazard to users.
Do not Use a damaged instrument	If the instrument has been damaged, its danger will be unpredictable. Please disconnect power cord and don't use the instrument; do not attempt to repair it.
Do not Use an instrument that works abnormally	If the instrument is not working properly, its danger is unpredictable. Please disconnect power cord and don't use the instrument; do not attempt to repair it.
Do not Use the instrument beyond instructions specified in this manual	If out of scope, the protection provided by the instrument will be invalid.

CERTIFICATION, LIMITED WARRANTY, & LIMITATION OF LIABILITY

Applent Instruments, Inc. (shortened form **Applent**) certifies that this product met its published specifications at the time of shipment from the factory. Applent further certifies that its calibration measurements are traceable to the People's Republic of China National Institute of Standards and Technology, to the extent allowed by the Institution's calibration facility or by the calibration facilities of other International Standards Organization members.

This Applent instrument product is warranted against defects in material and workmanship for a period corresponding to the individual warranty periods of its component products. **The warranty period is 1 year and begins on the date of shipment.** During the warranty period, Applent will, at its option, either repair or replace products that prove to be defective. This warranty extends only to the original buyer or end-user customer of a Applent authorized reseller, and does not apply to fuses, disposable batteries or to any product which, in Applent's opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation or handling.

For warranty service or repair, this product must be returned to a service facility designated by Applent. The buyer shall prepay shipping charges to Applent and Applent shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to Applent from another country.

Applent warrants that its software and firmware designated by Applent for use with an instrument will execute its programming instruction when properly installed on that instrument. Applent does not warrant that the operation of the instrument, or software, or firmware, will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside the environmental specifications for the product, or improper site preparation or maintenance.

THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. APPLENT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

> Applent Instruments Ltd.. Changzhou, Jiangsu, China, Rev.A3 October, 2009

Contents

Saf	ety Summary	/	2
	Safety Inf	ormation	2
CE	RTIFICATIO	N, LIMITED WARRANTY, & LIMITATION OF LIABILITY	
CO	Figure Co	ntents	4
	Table Cor	ntents	
1.	Unpacking	g and Preparation	
	1.1	Packing List	
	1.2	Power Requirements	
	1.3	Operating Environment	
	1.4	Cleaning	
	1.5	How to Remove the Handle	
2.	Overview		16
	2.1	Introduction	16
	2.2	Measurement Function	
	2.2.1	Measurement Parameters	
	2.2.2	Equivalent Method	
	2.2.3	Range	
	2.2.4	Measurement Speed	
	2.2.5	Trigger Mode	
	2.2.6	Basic Accuracy	
	Meas	urement Display Range	
	2.3	Signal Source	
	2.3.1	Test Frequency	
	2.3.2	Test Signal Level	
	2.3.3	Constant Voltage Source Internal Resistance	
	Test S	Signal Level Monitoring	
	2.4	Main Functions	
	2.4.1	Correction Function	
	2.4.2	Comparator Function (Sorting Function)	
	2.4.3	List Sweep	
	2.4.4	File Function	
	2.4.5	System Settings	
	2.4.6	Interface	
3.	Startup		
	3.1	Front Panel	21
	3.1.1	Front Panel Description	21
	3.1.2	Rear Panel	22
	3.2	Power On	22
	3.2.1	Power On	22
	3.2.2	Warm-up Time	22

4	3.3	Connect to Device under Test (DUT)	
4.	[Ivieas] Pa	ZMEAS DISDLAVS Page	24 24
	4.1 / 1 1	Macurement Eulertien [EUNC]	24
	4.1.1		24 26
	4.1.2		20 27
	4.1.5	Triagor Modo [TPIC]	, 2 20
	4.1.4		20
	4.1.5	Moscurement Speed [CEED]	20
	4.1.0		29
	4.1.7		29
	ч.2 Л Э 1	Comparator Function ON/Off [COMP]	
	4.2.1		
	л з		
	4.5 / 2 1	Counter Function [COUNT]	
	4.3.1 A A		
	ч. ч ДД1	Sween Trigger Mode [TRIG]	
	 ДД 2	Sweep IMODEL Setting	34
	-т. т .2 Д 5		ب-3 عد
5.	[Setup] Ke	ey	
	5.1	<meas setup=""> Page</meas>	
	5.1.1	Source Output Impedance [SRC RES]	
	5.1.2	Averaging Factor [AVG]	
	5.1.3	DC Bias Voltage [BIAS]	
	5.1.4	Auto LCZ Function [AUTO LCZ]	
	5.1.5	Monitor 1 and Monitor 2 [MON 1] [MON 2] Parameter Selection	
	5.1.6	Measurement [DELAY]	
	5.1.7	Auto Level Control [ALC]	
	5.1.8	[NOMINAL] Value Setting	
	5.2	<correction> Page</correction>	40
	5.2.1	Open Correction [OPEN]	40
	5.2.2	Short Correction [SHORT]	41
	5.2.3	Frequency spot 1, 2, 3 Correction [SPOT 1] [SPOT 2] [SPOT]	42
	5.3	<bin table=""> Page</bin>	42
	5.3.1	Measurement Function [FUNC]	43
	5.3.2	Comparator Function ON/OFF [COMP]	43
	5.3.3	Compare [Mode]	44
	5.3.4	Nominal Value for tolerance Mode [NOM]	45
	5.3.5	Auxiliary Bin ON/OFF [AUX]	45
	5.3.6	【BEEP】 Feature	46
	5.3.7	Total Number of Bins [#-BINS]	46
	5.3.8	Lower and Upper Limits Setup	46
	5.4	<list table=""> Page</list>	47
	5.4.1	Sweep Mode [MODE]	47
	5.4.2	List Sweep Parameters Setup	48
	5.4.3	Configure the Sweep Points	48

	5.4.4	Limit parameters [LMT] selection	
	5.4.5	Input [LOWER] and [UPPER] Limits Value	49
6.	System Config	gurations	
	6.1 <9	SYSTEM CONFIG> Page	
	6.1.1	System Language [LANGUAGE]	
	6.1.2	Setting the system date and time [DATE/TIME]	
	6.1.3	Account Setting [ACCOUNT]	
	6.1.4	Key Beep Setting [KEY BEEP]	
	6.1.5	Beep Tone Setting [TONE]	
	6.1.6	RS-232 Baud Rate Setting [BAUD]	
	6.1.7	Communication Protocol Settings [PROTOCOL]	53
	6.1.8	SCPI [TERMINATOR] Setting	53
	6.1.9	SCPI [HANDSHAKE] ON/OFF	54
	6.1.10	SCPI [ERROR CODE] ON/OFF	54
	6.1.11	SCPI [RESULT] Setting	55
	6.1.12	[DATA BUFFER]	55
	6.1.13	Restore to [DEFAULT SET]	55
	6.2 Sy	vstem Information Page	
7.	File Operation	1	
	7.1 <	FILE> Page	
	7.1.1	[MEDIA] Selection	
	7.1.2	Recall a File at Startup [AUTO RECALL]	57
	7.1.3	Auto save data to last file [AUTO SAVE]	57
	7.1.4	File operation	57
8.	Handler Interf	face	
	8.1 Pl	n Assignment	
	8.2 H	ow to Connection	
0	8.3 III Remote Contr	ming Chart	
9.	91 Ał	bout RS-232C	
	911	RS232C Connection	62
	912	How to Connect	63
	92 Pr	rotocol	63
	93 50	PI Protocol	63
	931	Modbus (RTU) Protocol	64
10.	SCPI Co	ommand Reference	
	10.1 Ha	andshake Protocol	65
	10.2 Te	rminator	65
	10.3 Te	rminator	
	10.3.1	Terminator Rules	
	10.3.2	Notation Conventions and Definitions	
	10.3.3	Command Structure	
	10.4 He	eader and Parameters	67
	10.4.1	Header	67
	10.4.2	Parameter	67
	10.4.3	Separator	
	10.4.4	Error Code	

10.5	5	Command Reference	69
10.6	5	DISPlay Subsystem	69
	10.6.1	DISP:PAGE	70
	10.6.2	DISP:LINE	70
10.7	7	FUNCtion Subsystem	71
	10.7.1	FUNCtion	71
	10.7.2	FUNCtion:IMPedance:AUTO	71
	10.7.3	FUNCtion:IMPedance:RANGe	72
	10.7.4	FUNCtion:DCR:RANGe	72
	10.7.5	FUNCtion:RANGe:AUTO	72
	10.7.6	FUNCtion:MONitor1 /2	72
10.8	3	FREQuency Subsystem	73
10.9	9	LEVel Subsystem	73
	10.9.1	LEVel:VOLTage (=VOLTage[:LEVel])	74
	10.9.2	LEVel:CURRent (=CURRent[:LEVel])	74
	10.9.3	LEVel:SRESistance (= VOLTage:SRESistance)	74
	10.9.4	LEVel:ALC (=AMPlitude:ALC)	75
10.1	10	APERture Subsystem	75
	10.10	1 APERture:RATE?	75
	10.10	2 APERture:AVG?	76
10.1	11	FETCh Subsystem	76
	10.11	1 FETCh?	76
	10.11	2 FETCh:IMPedance?	76
	10.11	3 FETCh:MAIN?	76
	10.11	4 FETCh:MONitor1? /2?	77
	10.11	5 FETCh:MONitor?	77
10.1	12	COMParator Subsystem	77
	10.12	1 COMParator:STATe	78
	10.12	2 COMParator:MODE	78
	10.12	3 COMParator:AUX	79
	10.12	4 COMParator:BINS	79
	10.12	5 COMParator:TOLerance:NOMinal	79
	10.12	6 COMParator:TOLerance:BIN	79
	10.12	7 COMParator:SLIM	80
	10.12	8 COMParator:BEEP	80
	10.12	9 COMParator:OPEN	80
10.1	13	LIST Subsystem	81
	10.13	1 LIST:PARAmeter	81
	10.13	2 LIST:STAT	81
	10.13	3 LIST:BAND	81
10.1	14	CORRection Subsystem	82
	10.14	1 CORRection:OPEN	83
	10.14	2 CORRection:SHORt	
	10.14	3 CORRection:SPOT:FREQuency	
	10.14	4 CORRection:SPOT:OPEN	84

10.14	.5	CORRection:SPOT:SHORt	
10.15	TRIC	Gger Subsystem	85
10.15	.1	TRIGger[:IMMediate]	85
10.15	.2	TRIGger:SOURce	85
10.15	.3	TRIGger:DELAY	85
10.16	BIAS	S Subsystem	
10.17	FILE	Subsystem	
10.17	.1	FILE?	
10.17	.2	FILE:SAVE	
10.17	.3	FILE:LOAD	
10.17	.4	FILE:DELete	
10.18	ERR	or Subsystem	
10.18	.1	ERRor?	
10.19	SYS	TEM Subsystem	
10.19	.1	SYSTem:SHAKehand	87
10.19	.2	SYSTem:CODE	87
10.19	.3	SYSTem:KEYLock	
10.19	.4	SYSTem:RESult	
10.20	Con	nmon Commands	
10.20	.1	*IDN?	
10.20	.2	*TRG	
10.20	.3	*SAV	
10.20	.4	*RCL	
Mod	bus (RTU) Protocol	90
11.1	Data	a Format	90
11.1.1	-	Command Frame	90
11.1.2	2	CRC-16 Calculation Method	91
11.1.3	}	Response Frame	92
11.1.4	ŀ	No Response	92
11.1.5	5	Error Code	93
11.2	Fund	ction Code	93
11.3	Reg	ister	93
11.4	Read	d Multiple Registers	93
11.5	Writ	ing to Multiple Registers	94
11.6	Echo	o Test	95
Mod	bus (RTU) Command	97
12.1	Reg	ister Overview	97
12.2	Fetc	h Measurement Data	101
12.2.1	-	Fetch measurement data [2000H-2003H]	101
12.2.2	2	Fetch Comparator Results [2004H]	102
12.3	Para	meter Setting	103
12.3.1	-	Function Register [3000H]	103
12.3.2	2	LCR Range Register [3001H]	103
12.3.3	}	Range Mode Register [3002H]	104
12.3.4	ļ	Measurement Speed Register [3003H]	105
	10.14 10.15 10.15 10.15 10.16 10.17 10.17 10.17 10.17 10.17 10.17 10.17 10.17 10.19 10.19 10.19 10.19 10.19 10.20 10	10.14.5 10.15 10.15.1 10.15.2 10.15.3 10.16 BIAS 10.17 10.17 10.17.1 10.17.2 10.17.3 10.17.4 10.18 10.19 SYS 10.19.1 10.19.2 10.19.3 10.19.4 10.20 10.20.1 10.20.2 10.20.3 10.20.4 Modbus (11.1 11.1.2 11.1.3 11.1.4 11.1.5 11.2 Fund 11.3 11.4 Reg 11.4 Reg 12.2 Fetc 12.2 12.3 Para 12.3 12.3 12.3 12.3 12.3 12.3 12.3.1 <td< td=""><td>10.14.5 CORRection:SPOT:SHORt. 10.15.1 TRIGger Subsystem 10.15.1 TRIGger:SOURce 10.15.2 TRIGger:SOURce 10.15.3 TRIGger:DELAY 10.16 BIAS Subsystem 10.17 FILE Subsystem 10.17 FILE Subsystem 10.17.1 FILE SAVE 10.17.2 FILESAVE 10.17.3 FILE DELete 10.18 ERRor Subsystem 10.18 ERRor Subsystem 10.19 SYSTem:SHAKehand 10.19.1 SYSTem:COE 10.19.2 SYSTem:COE 10.19.3 SYSTem:KEVLock 10.10.4 SYSTem:KEVLock 10.20 Common Commands 10.20.1 'IDN? 10.20.2 'TRG 10.20.3 'SAV 10.20.4 'RCL Modubus (RTU) Protocol 11.1 Command Frame 11.12 CRC-16 Calculation Method 11.13 Response 11.14 No Response 11.15 Error Code 11.2</td></td<>	10.14.5 CORRection:SPOT:SHORt. 10.15.1 TRIGger Subsystem 10.15.1 TRIGger:SOURce 10.15.2 TRIGger:SOURce 10.15.3 TRIGger:DELAY 10.16 BIAS Subsystem 10.17 FILE Subsystem 10.17 FILE Subsystem 10.17.1 FILE SAVE 10.17.2 FILESAVE 10.17.3 FILE DELete 10.18 ERRor Subsystem 10.18 ERRor Subsystem 10.19 SYSTem:SHAKehand 10.19.1 SYSTem:COE 10.19.2 SYSTem:COE 10.19.3 SYSTem:KEVLock 10.10.4 SYSTem:KEVLock 10.20 Common Commands 10.20.1 'IDN? 10.20.2 'TRG 10.20.3 'SAV 10.20.4 'RCL Modubus (RTU) Protocol 11.1 Command Frame 11.12 CRC-16 Calculation Method 11.13 Response 11.14 No Response 11.15 Error Code 11.2

	12.3.	5 Averaging Factor Register [3004H]	
	12.3.6	6 Trigger Mode Register [3005H]	
	12.3.7	7 Measurement Frequency Register [3006H-3007H]	
	12.3.8	8 Level Register [3008H-3009H]	
	12.3.9	9 DCR Range Register [300AH]	
	12.3.3	10 Startup File Recall Register [300CH]	
	12.3.2	11 Auto Save [300DH]	
	12.3.2	12 System Language Setting [300EH]	
	12.3.2	13 Test Current Register [3010H-3011H]	
	12.3.2	14 DC Bias Register [3012H-3013H]	
	12.4	Comparator Setting	
	12.4.2	1 Comparator Status Register [3100H]	
	12.4.2	2 Comparator Mode Register [3101H]	
	12.4.3	3 Secondary Comparator (AUX) ON/OFF Register [3102H]	
	12.4.4	4 Comparison Total Bins Register [3103H]	
	12.4.5	5 Beep Register [3104H]	
	12.4.6	6 Nominal Value Register [310AH-310BH]	
	12.4.7	7 Secondary Parameter Limit Value Register [310CH-310FH]	
	12.4.8	8 Primary Parameter Limit Value Register [3110H-3133H]	
	12.5	File Operation	
	12.5.2	1 Save to Current File [4000H]	
	12.5.2	2 Save to Specified File [4008H]	
	12.5.3	3 Reloading the Current File [4010H]	
	12.5.4	4 Load the Specified File [4018H]	
	12.6	Correction	
	12.6.2	1 Full-frequency Open Circuit Correction [5000H]	
	12.6.2	2 Full-frequency Short-circuit Correction [5008H]	
	12.6.3	3 Spot frequency Correction Setting [5010H-5015H]	
	12.6.4	4 Spot Frequency Open Circuit Correction [5020H]	
	12.6.5	5 Spot Frequency Short-Circuit Correction [5028H]	
	12.7	System Setup	
	12.7.2	1 Instrument version number [0000H]	
13.	Accu	uracy	
	13.1	Accuracy	
	3. .	Accuracy for L, C, R, Z	
	13.1.2	2 D Accuracy	
	13.1.3	3 Q Accuracy	
	13.1.4	4 θ Accuracy	
	13.1.	5 R _p Accuracy	
	13.1.6	6 R _s Accuracy	
	13.2	Accuracy Factor	
	13.3	Performace Test	
	13.3.3	1 Devices and Equipment Used for Performance Test	
	13.3.2	2 Function check	
	13.3.3	3 Test signal level accuracy test	
	13.3.4	4 Frequency accuracy test	

	13.3.5	Capacitance C, loss D accuracy test	127
	13.3.6	Inductance L accuracy test	127
	13.3.7	Impedance Z accuracy test	127
14.	Example	S	129
14.1	Ва	sic Measurement Procedure	129
14.2	Exa	ample	130
15.	Specifica	tion	132
15.1	Ge	neral Specification	132
15.2	Dii	nensions	134

Figure Contents

Figure 3-1front panelFigure 3-2rear panelFigure 3-3Connect to DUTFigure 4-1 <meas display=""> PageFigure 4-2<bin meas=""> pageFigure 4-3Comparator WorkflowFigure 4-4<bin count=""> pageFigure 4-5<list sweep=""> pageFigure 4-6Sweep ModeFigure 4-7<enalarg display=""> PageFigure 5-1<meas setup=""> PageFigure 5-2<correction> PageFigure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<ein table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-10Sweep ModeFigure 5-2<correction> PageFigure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<sin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 6-1<system config=""> PageFigure 7-1<file> PageFigure 7-1<file> PageFigure 8-1Ypical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-2Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 9-1Modbus Command</file></file></system></sin></correction></list></ein></correction></meas></enalarg></list></bin></bin></meas>	Figure 1-1	Instrument handle (schematic, panel graphics do not match the actual)	15
Figure 3-2rear panelFigure 3-3Connect to DUT.Figure 4-1 <meas display=""> PageFigure 4-2<bin meas=""> pageFigure 4-3Comparator WorkflowFigure 4-4<bin count=""> page.Figure 4-5<list sweep=""> page.Figure 4-6Sweep ModeFigure 5-1<meas setup=""> Page.Figure 5-2<correction> Page.Figure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<bin table=""> page.Figure 5-6Tolerance mode.Figure 5-7Example of sorting in tolerance modeFigure 5-10Sweep ModeFigure 5-2<sustem config=""> Page.Figure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<bin table=""> page.Figure 5-6Tolerance mode.Figure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 6-1<system config=""> Page.Figure 6-2<system information=""> page.Figure 8-1System CONFIG> Page.Figure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-4Signal timing chart.Figure 9-7RS-232 interface on the rear panel [male]Figure 9-8S-232 interface on the rear panel [male]Figure 9-1-1Modbus Command FrameFigure 11-1Modbus Command Frame</system></system></bin></sustem></bin></correction></meas></list></bin></bin></meas>	Figure 3-1	front panel	21
Figure 3-3Connect to DUT	Figure 3-2	rear panel	22
Figure 4-1 <meas display=""> Page</meas>	Figure 3-3	Connect to DUT	22
Figure 4-2 <bin meas=""> page Figure 4-3 Comparator Workflow Figure 4-4 <bin count=""> page Figure 4-5 <list sweep=""> page Figure 4-6 Sweep Mode Figure 4-7 <enalarg display=""> Page Figure 5-1 <meas setup=""> Page Figure 5-2 <correction> Page Figure 5-3 Stray Admittance Figure 5-4 Residual Impedances Figure 5-5 <bin table=""> page Figure 5-6 Tolerance mode Figure 5-7 Example of sorting in tolerance mode Figure 5-8 Sequential mode: Figure 5-9 <list table=""> Page Figure 5-10 Sweep Mode Figure 5-2 <system config=""> Page Figure 6-1 <system config=""> Page Figure 6-1 <system information=""> page Figure 7-1 <file> Page Figure 8-2 Typical Circuit Diagram of Handler Interface Input signals (Trig) Figure 8-3 Signal timing chart. Figure 9-1 RS-232 interface on the rear panel [male] Figure 9-2 RS-232 interface on the rear panel [male] Figure 10-1 C</file></system></system></system></list></bin></correction></meas></enalarg></list></bin></bin>	Figure 4-1	<meas display=""> Page</meas>	24
Figure 4-3Comparator WorkflowFigure 4-4 <bin count=""> pageFigure 4-5<list sweep=""> pageFigure 4-6Sweep ModeFigure 4-7<enalarg display=""> PageFigure 5-1<meas setup=""> PageFigure 5-2<correction> PageFigure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<bin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-10Sweep ModeFigure 5-2SYSTEM CONFIG> PageFigure 6-1<system config=""> PageFigure 6-2< SYSTEM INFORMATION> pageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-4Signal timing chartFigure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command TrameFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</system></list></bin></correction></meas></enalarg></list></bin>	Figure 4-2	<bin meas=""> page</bin>	
Figure 4-4 <bin count=""> pageFigure 4-5<list sweep=""> pageFigure 4-6Sweep ModeFigure 4-7<enalarg display=""> PageFigure 5-1<meas setup=""> PageFigure 5-2<correction> PageFigure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<bin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2< SYSTEM CONFIG> PageFigure 8-3Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-4Signal timing chartFigure 8-5Signal timing chartFigure 9-7Rs-232 interface on the rear panel [male]Figure 10-1Command FrameFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</system></list></bin></correction></meas></enalarg></list></bin>	Figure 4-3	Comparator Workflow	
Figure 4-5 <list sweep=""> pageFigure 4-6Sweep ModeFigure 4-7<enalarg display=""> PageFigure 5-1<meas setup=""> PageFigure 5-2<correction> PageFigure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<bin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-9SUST TABLE> PageFigure 5-10Sweep ModeFigure 5-11Sweep ModeFigure 6-12<system config=""> PageFigure 6-12<system config=""> PageFigure 6-12<system information=""> pageFigure 8-13Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-2Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</system></system></system></list></bin></correction></meas></enalarg></list>	Figure 4-4	<bin count=""> page</bin>	32
Figure 4-6Sweep ModeFigure 4-7 <enalarg display=""> PageFigure 5-1<meas setup=""> PageFigure 5-2<correction> PageFigure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<bin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 6-1<system config=""> PageFigure 6-2<system config=""> PageFigure 7-1<file> PageFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</file></system></system></list></bin></correction></meas></enalarg>	Figure 4-5	<list sweep=""> page</list>	33
Figure 4-7 <enalarg display=""> Page</enalarg>	Figure 4-6	Sweep Mode	34
Figure 5-1 <meas setup=""> PageFigure 5-2<correction> PageFigure 5-3Stray Admittance</correction></meas>	Figure 4-7	<enalarg display=""> Page</enalarg>	34
Figure 5-2 <correction> PageFigure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5<bin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2< SYSTEM CONFIG> PageFigure 8-2< SySTEM INFORMATION> pageFigure 8-3Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command Frame</system></list></bin></correction>	Figure 5-1	<meas setup=""> Page</meas>	36
Figure 5-3Stray AdmittanceFigure 5-4Residual ImpedancesFigure 5-5 <bin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2< SYSTEM CONFIG> PageFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command TrameFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</system></list></bin>	Figure 5-2	<correction> Page</correction>	40
Figure 5-4Residual ImpedancesFigure 5-5 <bin table=""> page.Figure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2< SYSTEM INFORMATION> pageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 9-1RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</system></list></bin>	Figure 5-3	Stray Admittance	40
Figure 5-5 <bin table=""> pageFigure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9<list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2< SYSTEM INFORMATION> pageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Signal timing chart</system></list></bin>	Figure 5-4	Residual Impedances	41
Figure 5-6Tolerance modeFigure 5-7Example of sorting in tolerance modeFigure 5-8Sequential mode:Figure 5-9 <list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2< SYSTEM INFORMATION> pageFigure 7-1<file> PageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree Structure.Figure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</file></system></list>	Figure 5-5	<bin table=""> page</bin>	43
Figure 5-7Example of sorting in tolerance mode	Figure 5-6	Tolerance mode	44
Figure 5-8Sequential mode:Figure 5-9 <list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2<system information=""> pageFigure 7-1<file> PageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-4Signal timing chartFigure 9-1RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</file></system></system></list>	Figure 5-7	Example of sorting in tolerance mode	44
Figure 5-9 <list table=""> PageFigure 5-10Sweep ModeFigure 6-1<system config=""> PageFigure 6-2<system information=""> pageFigure 7-1<file> PageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-4Signal timing chartFigure 9-1RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</file></system></system></list>	Figure 5-8	Sequential mode:	44
Figure 5-10Sweep ModeFigure 6-1 <system config=""> PageFigure 6-2< SYSTEM INFORMATION> pageFigure 7-1<file> PageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-4Signal timing chartFigure 9-1RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</file></system>	Figure 5-9	<list table=""> Page</list>	47
Figure 6-1 <system config=""> PageFigure 6-2<system information=""> pageFigure 7-1<file> PageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-4Signal timing chartFigure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</file></system></system>	Figure 5-10	Sweep Mode	48
Figure 6-2< SYSTEM INFORMATION> pageFigure 7-1 <file> PageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-3Signal timing chartFigure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value</file>	Figure 6-1	<system config=""> Page</system>	50
Figure 7-1 <file> PageFigure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting, IDX, EOM)Figure 8-4Signal timing chart.Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree Structure.Figure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value.</file>	Figure 6-2	< SYSTEM INFORMATION> page	55
Figure 8-1Pin AssignmentFigure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting, IDX, EOM)Figure 8-4Signal timing chart.Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree Structure.Figure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value.	Figure 7-1	<file> Page</file>	56
Figure 8-2Typical Circuit Diagram of Handler Interface Input signals (Trig)Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting, IDX, EOM)Figure 8-4Signal timing chart.Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree Structure.Figure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value.	Figure 8-1	Pin Assignment	58
Figure 8-3Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)Figure 8-4Signal timing chartFigure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value	Figure 8-2	Typical Circuit Diagram of Handler Interface Input signals (Trig)	59
Figure 8-4Signal timing chartFigure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value	Figure 8-3	Typical Circuit Diagram of Handler Interface Output signals (sorting, IDX, EOM)	60
Figure 9-1RS-232 interface on the rear panel [male]Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value	Figure 8-4	Signal timing chart	60
Figure 9-2RS-232 interface on the rear panel [male]Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value	Figure 9-1	RS-232 interface on the rear panel [male]	62
Figure 10-1Command Tree StructureFigure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value	Figure 9-2	RS-232 interface on the rear panel [male]	63
Figure 11-1Modbus Command FrameFigure 11-2Modbus append CRC-16 value	Figure 10-1	Command Tree Structure	67
Figure 11-2 Modbus append CRC-16 value	Figure 11-1	Modbus Command Frame	90
	Figure 11-2	Modbus append CRC-16 value	91

Fiture 11-3	Normal response frame	92
Figure 11-4	Abnormal response frame	92
Figure 11 F	Pood Multiple Degisters (0:02)	20
Figure 11-5		
Figure 11-6	Read Multiple Registers (0x03) Response Frame	94
Figure 11-7	Writing to multiple registers (0x10)	94
Figure 11-8	Write to Multiple Registers (0x03) Response Frame	95
Figure 11-9	echo test (0x08)	95
Figure 13-1	Basic measurement accuracy A	123
Figure 13-2	Basic accuracy correction curve	124
Figure 14-1	Measurement flow chart	129
Figure 14-2	Capacitor test results	131

Table Contents

Table 2-1	Series-parallel equivalent circuit	
Table 2-2	AT381x Measurement display range	
Table 2-3	Test signal accuracy	
Table 3-1	Front Panel Description	21
Table 4-1	The combinations of measurement parameters	25
Table 4-2	The combinations of monitor parameters	25
Table 4-3	Measurement and Monitor parameter descriptions	25
Table 4-4	Impedance range mode	
Table 4-5	Range and corresponding test range	
Table 4-6	AT381x frequency resolution	27
Table 4-7	AT3818 the most commonly used frequency list	27
Table 4-8	AT3816A/AT3816B List of the most common frequencies	27
Table 4-9	AT3817A Frequency list	27
Table 4-10	AT3810A List of the most common frequencies	27
Table 4-11	The most commonly used level list	
Table 4-12	Sweep trigger mode	
Table 4-13	sweep method	
Table 5-1	Sweep mode description	47
Table 6-1	SCPI error code	54
Table 8-1	Description of Handler Interface Output Signals	
Table 8-2	Description of Handler Interface Input Signals	59
Table 8-3	Description of Handler Interface Power Rating Signals	59
Table 8-4	Timing	60
Table 9-1	Minimum subset of the RS-232 standard	62
Table 10-1	Multiplier Mnemonics	67
Table 10-2	SCPI error code	68
Table 11-1	Command Frame Description	90
Table 11-2	Description for abnormal response frame	92
Table 11-3	Description for Error Code	93
Table 11-4	Function code	93
Table 11-5	Read Multiple Registers	94
Table 11-6	Writing to multiple registers	94
Table 12-1	Register Overview	97
Table 13-1	Impedance scale factor Ka, Kb	
Table 13-2	Temperature factor Kc	
Table 13-3	Calibration interpolation factor Kf	
Table 13-4	Cable length factor	
Table 13-5	Devices and equipment used for performance testing	

1. Unpacking and Preparation

Thank you for purchasing our products. Please read this chapter carefully before use. In this chapter you will learn the following:

- Packing List
- Power Requirements
- Operating Environment
- Cleaning
- How to Remove the Handle

1.1 Packing List

Before using the instrument, please:

1. Check appearance of the product whether there is damage, scratches, etc.;

2. Check the instrument packing list if there are any missing items.

If there is any damage or insufficient accessories, please contact Applent Instruments Sales or distributor immediately.

1.2 Power Requirements

AT381x can only be used in the following power conditions:

Voltage: 90V-260VAC Power: up to 30VA

Warning: To prevent electric shock, please connect the power ground. If users replace power cord, make sure that the ground of the power cord is securely connected.

1.3 Operating Environment

AT381x must be used under the following environmental conditions: Temperature: 0°C ~ 55°C, Humidity: < 70% RH at 23°C

1.4 Cleaning

To prevent the risk of electric shock, unplug the power cord before cleaning.

To prevent electrical shock, disconnect the AT381x power cable from the receptacle before cleaning.

Use a dry cloth or a cloth slightly dipped in water to clean the casing. Do not attempt to clean

the AT381x internally.

WARNING: Don't Use Organic Solvents (such as alcohol or gasoline) to clean the instrument.

1.5 How to Remove the Handle

Instrument handle can be adjusted. Hold both sides of the handle with both hands, gently pull it to the sides, and then rotate the handle. The handle can be adjusted to four positions as shown below:

 $\square \rightarrow$

Figure 1-1

Instrument handle (schematic, panel graphics do not match the actual)

Position 1 [Hands hold both sides of the handle at the same time, gently pull it to the sides until it can rotate freely, then switch to the Position 2

Handheld position

position 2 [hold both sides of the handle at the same time, gently pull it to the sides until it can rotate freely, then switch to the handheld position]

Remove handle position. (Pull to both sides until the handle is removed.)

2. Overview

This chapter contains general information about AT381x. The information is organized as follows

- Introduction
- Measurement Function
- Signal Source
- Main Functions

2.1 Introduction

Thank you for purchasing AT381X LCR meter.

AT381X is precision LCR meter that uses a fully automated real-time inspection micro-desktop instrument controlled by high-performance 32-bit ARM microprocessor. The instrument can select any test frequency between 10Hz and 300 kHz, and can select test signal level between 0.01V and 2.00V with 0.01V steps. Built-in -2.5V~+2.5V programmable DC bias automatically measures inductance L, capacitance C, resistance value R, complex impedance Z, quality factor Q, loss tangent value D, phase angle θ (degrees), phase θ (radian), and DC resistance DCR.

The primary and secondary parameters are displayed in all six digits; there are two monitoring displays at the same time. One of Z, D, Q, θ r, θ d, R, X, G, B, Y, Vac, Iac, Δ and Δ % can be displayed at the same time. With an accuracy of up to 0.05%, the instrument can meet requirements of accurate testing and mass production by various component manufacturers, schools, research institutes and metrological quality inspection departments.

The instrument has a professional sorting function, with 10 sets of storage files, programmable 9 qualified file, 1 auxiliary file (secondary-parameter unqualified), 1 unqualified file and primary parameter HI/IN/LO file, can set percentage points or absolute value sorting, equipped with Handler interface and RS-232C interface, used in automatic sorting system to complete automatic pipeline testing. An optional USB memory interface allows users to save setup data and measurement data to an external mover.

The instrument supports two kinds of communication protocols: computer remote control instruction is compatible with SCPI (Standard Command for Programmable Instrument standard command set) and Modbus communication protocol, remote control and data acquisition functions are efficiently completed.

Reference:

See 11. Specifications section for complete technical specifications.

2.2 Measurement Function

2.2.1 Measurement Parameters

Measurement parameters: Cs-Rs, Cs-D, Cp-Rp, Cp-D, Lp-Rp, Lp-Q, Ls-Rs, Ls-Q, G-B, R-X, Z- θ r, Z- θ d 和 DCR。

Among them :

L: InductanceC: CapacitanceR: ResistanceZ: ImpedanceX: ReactanceB: DensityG: ConductanceD: Loss θ : Phase angleQ: Quality factorDCR : DC resistanceThe subscript s indicates serial equivalent, p indicates parallel equivalent

2.2.2 Equivalent Method

Series, Parallel.

The actual capacitance, inductance, and resistance are not ideal for pure reactance and purely resistive components. They usually have both resistance and reactance components. An actual impedance component can be modeled in series or parallel by an ideal resistor and an ideal reactor (inductor or capacitor).

It can be mathematically converted using a formula, but the two forms are different, inconsistency depends on the quality factor Q (or loss D).

Circuit Form		Loss D	Equivalent Conversion
L		D=2πFLp/Rp=1/Q	Ls=Lp/(1+D ²) Rs=RpD ² /(1+D ²)
-	Ls Rs	D=Rs/2πFLs=1/Q	$Lp=(1+D^{2})Ls$ $Rp=(1+D^{2})Rs/D^{2}$
с		D=1/2πFCpRp=1/Q	$Cs = (1+D^2)Cp$ $Rs = RpD^2/(1+D^2)$
		D=2πFCsRs=1/Q	$Cp=Cs/(1+D^2)$ Rp=Rs(1+D^2)/D ²

Table 2-1Series-parallel equivalent circuit

Definition for Q、D、Xs is : Q=Xs/Rs , D=Rs/Xs , Xs=1/2\piFCs=2\piFLs

Generally, a series equivalent circuit is used for components having a low impedance value Z (for example, a high value capacitor and a low value inductor); a parallel equivalent circuit is used for a component having a large impedance value Z (low value capacitor and high value inductor).

At the same time, equivalent circuit must be determined according to the actual use of component, such as capacitors, series equivalent circuit is used for power supply filtering,

Suggestion

parallel equivalent circuit is used for LC oscillation circuits.

2.2.3 Range

Use 9-range test, auto, lock and nominal.

Nominal range (Applent new term definition): The instrument automatically selects the best range based on nominal value.

2.2.4 Measurement Speed

The instrument is divided into four speeds: slow speed, medium speed and fast speed. FAST speed: 40 times / sec MED speed: 20 times / sec SLOW speed: 3 times / sec

At the same time, 1-256 programmable average times can be performed to improve reading stability.

2.2.5 Trigger Mode

Internal, external, manual, and remote trigger.

2.2.6 Basic Accuracy

AT38180.05%AT3816A0.05%AT3816B0.1%AT3817A0.05%AT3810A0.05%AT3817D0.1%

Measurement Display Range

Table 2-2AT381x Measurement display range

Parameter	Measurement display range
L	0.00001nH ~ 9999.99H
С	0.00001pF ~ 999.999mF
R、X、Z	0.00001Ω ~ 99.9999M Ω
B, G	0.01nS ~ 999.999S
D	0.00001 ~ 9.99999
Q	0.00001 ~ 999999.9
θd	-179.999° ~ 179.999°
θr	-3.14159 ~ 3.14159
%	-999.999% ~ 999.999%

2.3 Signal Source

2.3.1 Test Frequency

AT3818 :	10Hz ~ 300kHz continuous test frequency

AT3816A : 50Hz ~ 200kHz continuous test frequency

AT3816B :	50Hz ~ 200kHz 37 points
AT3817A:	50Hz ~ 100kHz continuous test frequency
AT3810A:	10Hz ~ 20kHz continuous test frequency
AT3817D:	50Hz ~ 100kHz, 10 points
	(• 0.019/

Frequency accuracy : 0.01%

2.3.2 Test Signal Level

ACV : 10.00mV~2.00V, Accuracy : 10%, CV mode accuracy : 6% ACI : 100.0 μ A~20.00mA, Accuracy : 10%, CC mode accuracy : 6% @2Vmax DCR : ±1VDC (2Vpp) square wave, 3Hz Maximum 0.033A (Max), output impedance 30Ω

2.3.3 Constant Voltage Source Internal Resistance

Can be set to 30Ω , 50Ω and 100Ω

Test Signal Level Monitoring

Table 2-3

Test s	signal	accuracy

Mode	Range	Accuracy	
Valtaga	10mV _{RMS} - 2.00V _{RMS}	\pm (3%×reading+0.5mV)	
voltage	$0.01 mV_{RMS}$ - $10 mV_{RMS}$	\pm (12%×reading+0.1mV)	
Current	100µA _{RMS} - 66mA _{RMS}	± (3%×reading+5µA)	
Current	0.001µA _{RMS} - 100µA _{RMS}	± (12%×reading+1µA)	

DC bias

-2.5V~+2.5V

Accuracy : 0.5% (±0.005V)

2.4 Main Functions

2.4.1 Correction Function

Open clear zero: Eliminate effects of stray impedance on the test side and the instrument. The instrument can perform single-point, three-point frequency open circuit clear zero or sweep frequency (all typical frequency) open circuit clear zero.

Short-circuit clear zero: Eliminate effects of series resistance and inductance of the leads. The instrument can perform single point, thre-point frequency short circuit clear zero or sweep frequency (all typical frequency) short circuit clear zero.

2.4.2 Comparator Function (Sorting Function)

The instrument can perform multiple sorting, sorting is based on the measured values, regardless of deviation mode.

PASS file (BIN1-BIN9): indicates that both of primary and secondary parameters are qualified; Auxiliary file (AUX): indicates that primary parameter is qualified but secondary parameter is unqualified when the auxiliary file is opened;

FAIL (OUT): The primary parameter is unqualified, or the primary parameter is qualified but the secondary parameter is unqualified when the auxiliary file is closed.

HI/IN/LO: More detailed comparison results of primary parameters, HI: primary parameters

are high, LO: primary parameters are low, IN: primary parameters are qualified

• Comparison Method:

Absolute tolerance \pm TOL sorting: The absolute deviation of measured value from nominal value is compared with the limit of each bin.

Percentage tolerance %TOL sorting: The percentage deviation of measured value from nominal value is compared to the limit of each bin.

Sequential comparison sorting: The measured value is directly compared with the upper and lower limits

• Bin count:

Each bin corresponds to a bin counter, the counting range: 0 ~ 999999.

• Bin display :

There is a bin display page and a bin count display page.

All comparator results have corresponding IO port outputs on the Handler interface.

2.4.3 List Sweep

List sweep can be performed up to 10 points frequency or 10 points voltage.

List sweep comparator: Each list sweep point can output HI/IN/LO (high/pass/low) discrimination.

The list sweep limit sets are the upper and lower limit values.

2.4.4 File Function

There are 10 files in the instrument's internal flash memory that users can use to save instrument data. These data include:

- 1. All parameters in <Settings> page
- 2. Setting data in <Comparator Setting> page
- 3. Setting data in <Setup List Sweep> page

2.4.5 System Settings

- 1. Keyboard lock function
- 2. 2. Administrator and user accounts, which can set passwords for administrators

2.4.6 Interface

USB Host Interface :

Used to save screen images, save setup parameters and measurement data on a USB flash drive.

RS-232 Remote Control :

Supports baud rate up to 115200bps, compatible with SCPI protocol and Modbus RTU protocol.

Handler Interface

Full optocoupler isolation, input and output ports with built-in pull-up resistors.

Supports up to 30V external power supply.

Input: trigger signal,

Output: All sorting comparison result signals and list sweep comparison result signals; measurement synchronization signals (IDX, EOM).

3.Startup

In this chapter you will learn the following:

- Front panel including the introduction of buttons and test terminals.
- Rear panel describes the power and interface information.
- Power on—including poweron self-test process, instrument defaults, and instrument warm-up time.
- Display information information about the prompts that will be encountered during startup and use of the instrument.
- Start testing including how to connect to the test side

3.1 Front Panel

3.1.1 Front Panel Description

Figure 3-1 front panel

Table 3-1

Front Pa	nel Description	
No.	Description	
1	USB Disk Port (USB-Host)	
2	Manual trigger button, and manual or remote trigger indicator	
	Power switch. Touch button	
2	Δ Warning: In order to ensure the safety of power supply inside the machine,	
5	the instrument needs to wait 2 seconds after the power is turned off to allow it	
	to start again.	
4	System soft keys, including files, systems, keyboard locks, etc.	
5	Function softkey	
6	Main soft keys: measurement and setting	
	Test terminal: The input is used to connect a four-terminal test fixture or Kelvin	
7	clip.	
	Hcur high terminal - current side	

	Hpot high terminal - voltage side
	Lpot low terminal - voltage side
	Lcur low terminal - current side
8	Numeric keypad
9	Cursor key
10	LCD Display

3.1.2 Rear Panel

Figure 3-2

itear i anei

- 1. Power Cable Receptacle (Outlet)
- 2. GND
- 3. RS-232 interface
- 4. HANDLER interface

3.2 Power On

3.2.1 Power On

Power switch at the bottom left of the panel. The button is a touch button, press the power button for 1s, the instrument will start or shut down.

 \bigwedge

In order to ensure the safety of power supply inside the machine, the instrument needs to wait 2 seconds after the power is turned off to allow it to start again.

3.2.2 Warm-up Time

In order to achieve the accuracy rating, warm up the instrument for at least 30 minutes.

3.3 Connect to Device under Test (DUT)

If using Kelvin test clip provided along with the instrument, connect to the instrument test terminal as follows. Connect to DUT

Figure 3-3

Warning: Do not apply DC voltage or current to the test terminal, otherwise the instrument will be damaged.

WARNING: If test a charged device, make sure that its charge is removed before measuring.

• Test fixtures and cables:

We recommend that users use our test fixtures or test cables, if using test fixtures or cables made by user or other company may result in incorrect measurements.

Our test fixture contact reeds are silver plated or gold plated. In long-term work (for example, $1\sim2$ years), the plating surface will be worn. It is recommended to replace the new fixtures when there are obvious deviations in several tests.

Connect test fixture or test cable to four test terminals of Hcur, Hpot, Lcur, and Lpot on the front panel of the instrument.

Note: When the test fixture or test cable is not installed, instrument will display unstable measurement.

4.[Meas] Page

This section includes the following information:

- MEAS DISPLAY page
- BIN MEAS page
- BIN COUNT page
- LIST SWEEP page

4.1 <MEAS DISPLAY> Page

Press [Meas] key to enter <MEAS DISPLAY> page.

<Meas Display> page mainly highlights measurement results and displays the current sorting result in small characters.

The following 6 common functions can be set on this page

- LOG Record test data in a USB disk file
- FUNC Measurement function
- RANGE Measurement range, range number and automatic/manual test.
- FREQ Measurement frequency
- TRIG Trigger Setup
- LEVEL Test signal level
- SPEED Test speed

The primary and secondary test results are displayed in this area in large characters, monitor area is displayed in small characters.

In the lower part of the screen, some measurement-related settings are displayed in this area, and the currently tested comparator results are also displayed here.

Figure 4-1

4.1.1 Measurement Function [FUNC]

AT381x simultaneously measures four components of the complex impedance (parameters) in a measurement cycle. These include primary parameter, secondary parameter and two monitor parameters.

Note:	The monitor parameters need to be set in [Setup] page.						
NOLC.	The monitor parameters are initially set to OFF.						
	 Types o 	f measurer	nent parameters:				
Table 4-1	The combin	ations of n	neasurement paramete	ers			
	Cs-Rs		Cs-D	Cp-Rp	Cp-D		
	Lp-Rp		Lp-Q	Ls-Rs	Ls-Q		
	Rs-Q		Rp-Q	R-X	DCR		
	Z-θr		Z-θd	Z-D	Z-Q		
	Monito	or paramet	ers :				
Table 4-2	The combin	ations of n	nonitor parameters		Ι		
	Z		D	Q			
	Vac		Iac	Δ	Δ%		
	θr		θd	R	X		
	G		В	Y			
	Measu	rement and	d Monitor parameter	descriptions :			
Table 4-3	Measureme	nt and Moi	nitor parameter descri	ptions			
	Parameter	Descripti	on				
	Cs	Capacita	nce value measured u	ising the series eq	uivalent circuit model		
Cp Capacitance value measured using the parallel equivalent circu					equivalent circuit model		
	Ls	Inductan	ce value measured us	sing the series equ	ivalent circuit model		
	Lp	Inductan	ce value measured us	ing the parallel eq	quivalent circuit model		
	Rs	Series eq	uivalent resistance				
	Rp	Parallel e	Parallel equivalent resistance				
	DCR	DC resist	DC resistance				
	Z	Absolute	Absolute value of impedance				
	Y	Absolute	Absolute value of admittance				
	G	Conducta	Conductance				
	В	Sustenar	Sustenance				
	R	R Resistance (=Rs) X Reactance D Dissipation factor					
	Х						
	D						
	Q Quality factor(=1/D)						
	θr	θr Phase radian θd Phase angle Vac Test signal Voltage Jac Test signal Current					
	θd						
	Vac						
	Iac						
	Δ	Absolute	deviation value				
	Δ%	Relative	deviation value				
	Proced	ure for set	ting the measuremen	t function [FUNC]			
Step 1	Press [Meas] to enter l	Meas page;				

- Step 2 Press [Meas Display] key to switch to the <Meas Display> page;
- Step 3 Use cursor keys to select the [FUNC] field;
- Step 4 Use soft keys to select the combination of primary and secondary parameters

4.1.2 Impedance Range [RANGE]

Table 4-4

Impedance range mode

Mode	Function overview	Advantage	Disadvantage
Auto	The instrument automatically	Users do not need	Auto range requires
Range	selects the best test range based	any participation	predictive range
	on impedance value. The range		and test speed will
	number in range field is		be lower than the
	automatically set.		manual range
			mode, which is
			especially
			noticeable at low
			frequencies (below
			1 kHz).
Hold	Measurement is performed with	Test speed is the	Users need to
Range	a fixed impedance range	fastest.	participate in the
			range selection
Nominal	AT381x sets the optimum range	The best way for sort	Valid only in the
Range	depending on the nominal	test. Speed is the	sorting mode.
	value.	fastest.	

• Available impedance range :

The instrument has 9 ranges, they includes: 10Ω , 30Ω , 100Ω , 300Ω , $1k\Omega$, $3k\Omega$, $10k\Omega$, $30k\Omega$, $100k\Omega$.

During the test, the instrument selects appropriate range according to impedance of the device under test.

Table 4-5

|--|

Range No.	Range Definition	Impedance Measuring Range
8	10Ω	0 ~ 10Ω
7	30Ω	10Ω ~ 100Ω
6	100Ω	100Ω ~ 316Ω
5	300Ω	$316\Omega \sim 1 k\Omega$
4	1kΩ	1 k Ω ~ 3.16 k Ω
3	3kΩ	$3.16 k\Omega \sim 10 k\Omega$
2	10kΩ	10kΩ ~ 31.6kΩ
1	30kΩ	31.6k Ω ~ 100k Ω (∞)
0	100kΩ	100kΩ ~ ∞

Procedure for setting the impedance range [RANGE]

Press [Meas] key to enter <MEAS DISPLAY> page;

Step 1 Step 2

Use the cursor keys t	o select	[RANGE]	field;
-----------------------	----------	---------	--------

Soft key	Function
AUTO RANGE	The instrument will automatically select the range
HOLD RANGE	The instrument is locked on the current range
NORMINAL RANGE	The instrument will select the best range based on the nominal value.
INCR +	Increase range number while the range is changed to be locked
DECR -	Decrement range number while the range is changed to be locked

Note:	When range is cycle, so test sp range during au is used as a sor For the sorting	automatic, the ins beed will be slight atomatic measuren ting measurement user, please selec	trument will perfo ly slower than holo nent can slow dow , auto range metho ct nominal range n	rm range prediction for d range. Moreover, fre vn the response. Usua d is not suitable. node.	or each measurement equent changes in the lly, when instrument		
4.1.3	Measureme	nt Frequency [[FREQ]				
	AT3818 :	10Hz ~ 300kł	Hz continuous test	t frequency			
	AT3816A :	50Hz ~ 200kł	Hz continuous test	t frequency			
	AT3816B :	50Hz ~ 200kł	50Hz ~ 200kHz 37 points				
	AT3817A:	50Hz ~ 100kł	Hz continuous test	t frequency			
	AT3810A:	10Hz ~ 20kH	z continuous test	frequency			
	AT3817D:	50Hz ~ 100k	Hz, 10 points				
Table 4-6	AT381x freque	ency resolution			_		
	Frequency ra	nge(F)		Resolution			
	$10.0000 Hz \leq$	$F \leq 99.9999Hz$		0.0001Hz			
	100.0000Hz ≤	\leq F \leq 999.999Hz		0.001Hz			
	1.00000kHz ≤	\leq F \leq 9.99999kHz		0.01Hz			
	10.0000kHz ≤	\leq F \leq 99.9999kHz		0.1Hz			
	100.000kHz ≤	\leq F \leq 300.000kHz		1Hz			
	Frequency accu	uracy : 0.01%					
	Procedure	e for setting the te	est frequency :				
Step 1	Use cursor key	s to select [Freque	ency] field;				
Step 2	Use cursor key	s to select [Freque	ency] field;				
	Soft key	Function					
	INCR +	Frequently used	l frequency list				
	DECR -	Frequently used	l frequency list				
	The most	commonly used f	requency list				
Table 4-7	AT3818 the mo	ost commonly use	d frequency list				
	INCR +/ DECR	-					
	10Hz	50Hz	60Hz	100Hz	120Hz		
	1kHz	10kHz	20kHz	40kHz	50kHz		
	100kHz	200kHz	250kHz	300kHz			
Table 4-8	AT3816A/AT3	816B List of the r	nost common freq	uencies			
	INCR +/ DECR	-					
	10Hz	50Hz	60Hz	100Hz	120Hz		
	1kHz	10kHz	20kHz	40kHz	50kHz		
	100kHz	200kHz					
Table 4-9	AT3817A Freq	uency list					
	INCR +/ DECR	-					
	10Hz	50Hz	60Hz	100Hz	120Hz		
	1kHz	10kHz	20kHz	40kHz	50kHz		
	100kHz						
Table 4-10	AT3810A List	of the most comm	on frequencies				
	INCR +/ DECR	-					

Step 1

10Hz	50Hz	60Hz	100Hz	120Hz
1kHz	10kHz	20kHz		

4.1.4 Trigger Mode [TRIG]

The instrument has 4 trigger modes:

Internal trigger, manual trigger, external trigger and remote trigger.

Trigger Mode	Description
INT	Also called continuous test, the trigger signal is continuously tested by the
	internal period of the instrument according to the inherent period.
MAN	Each time the [Trig] key is pressed, the instrument performs a measurement
	cycle, and the instrument is in a waiting state at other times.
EXT	A rising edge pulse is received from the rear panel Handler interface and the
	instrument performs a measurement cycle. At other times the instrument is
	in a waiting state. Please refer to the Handler interface
BUS	After receiving the RS232 trigger command, the instrument performs a
	measurement cycle, at other times the instrument is in a waiting state.

Procedure for setting the trigger mode :

Press [Meas] key to enter <MEAS DISPLAY> page;

Step 2 Use cursor keys to select [TRIG] field;

Soft key	Function
INT	Internal Trigger Mode
MAN	Manual Trigger Mode
EXT	External Trigger Mode
BUS	Remote Trigger Mode

4.1.5 Test Signal Voltage Level [LEVEL]

Test level of the instrument is set with the true RMS value of the sine wave signal. The frequency of the sine wave signal is the test frequency and is generated by the internal oscillator of the instrument.

The output impedance of the instrument source can be set to 30Ω , 50Ω or 100Ω . Usually an output impedance of 30Ω is suitable.

If users do not require a level, please specify a 1V level for testing.

The test voltage and test current of the instrument can be set according to the specifications. If the constant level function is turned on, "*" is added as the mark at the end of the level setting value.

- Procedure for setting the test signal :
- Step 1 Press [Meas] key to enter <MEAS DISPLAY> page;
- Step 2 Use the cursor keys to select [Level] field;
- Step 3 Use soft keys to increase or decrease the level

Input data directly, soft key to select voltage or current unit.

Soft key	Function
INCR +	The most commonly used level list
DECR -	The most commonly used level list

٦

ALC ON	Turn Auto Level Control ON		
ALC OFF	Turn Auto Level Control OFF		
The most commonly used level list			

Table 4-11

		J		
The most o	rommonl	v used	level	list

INCR +/ DECR - (V)						
0.01	0.10	0.30	0.50	1.00	1.50	2.00
INCR +/ DEC	CR - (A)					
0.0001	0.0005	0.001	0.005	0.01	0.02	

4.1.6 Measurement Speed [SPEED]

The instrument offers 3 test speeds (slow, medium and fast). The slower the test speed, the more accurate and stable the test results are.

Procedure for setting the test speed:

Step 1 Press [Meas] key to enter <MEAS DISPLAY> page;

Use the cursor keys to select [SPEED] field; Step 3

Step 4 Use soft keys to select

Soft key	Function
SLOW	The measurement period is the longest, about 3 times / sec
MED	Moderate, about 20 times / sec
FAST	The fastest measurement, about 40 times / sec

The measurement speed refers to the time when Handler interface is triggered to the end of measurement (EOM) output.

1.	Measurement frequency:	300 kHz
----	------------------------	---------

2.	Page:	<bin meas=""></bin>	Page
2.	Page:	<bin meas=""></bin>	Pag

3. Range: Hold range or nominal range

4.	Average:		1
----	----------	--	---

5.	DC Bias:	OFF

6.	Automatic	LCZ	parameters:	OFF
----	-----------	-----	-------------	-----

- 7. Monitor 1: OFF
- 8. Monitor 2: OFF
- 9. ALC:

(ms)	Test freque	Test frequency (Hz)							
Speed	10	20	100	1k	2k	10k	100k	300k	DCR
SLOW	1600	800	483	342	336	332	332	332	333
MED	1600	800	160	94	91	88.5	88.5	88.5	171
FAST	1600	800	160	30	26.5	24.5	24.5	24.5	48

OFF

4.1.7 [LOG] Data

The instrument can record 10,000 sets of test data through the internal data buffer. These data are saved in an external USB disk in (.csv) file format. These files can be opened on a PC using a Windows Excel.

Procedure for setting recording data:

Press [Meas] key to enter <MEAS DISPLAY> page;

Use the cursor keys to select [Record] field; Step 2

The option before recording is not enabled:

Step 1

	Soft key	Function					
	START LOG	START LOG Start a new measurement data record					
Step 4	Press [START LOG] sof	t key to start recording data to internal buffer of the instrument.					
	Options after the start	t of recording					
	Soft key	Function					
	STOP	The current record is stopped.					
	SAVE & STOP	The current record is stopped and the data is saved to a USB disk file					
	CLEAR & STOP	The current record is stopped, the buffer is cleared, but the data is not					
		saved to the USB disk.					
Step 5	If press the soft key [SAVE], [SAVE & STOP] or [CLEAR & STOP], the current recording is						
	terminated.						
	Or wait for the buffer	to be full, press [SAVE to USB] button to save data to the USB disk.					
	Soft key	Function					
	SAVE to USB	Save data to a USB disk file					
	CLEAR BUFFER	The buffer is cleared and the current data is invalid.					
	• Before using the sa	aved data, insert the USB disk on the interface of front panel.					
	• The saved file is i	n the DATA subfolder in the same folder as the USB disk. The file					

Note:

Figure 4-2

- name is: 001.CSV For example: F:\AT3818\DATA\001.CSV
 Up to 1000 files can be saved (from 001.CSV to 999.CSV)
- The buffer size can be modified in the [DATA BUFFER] field on the [SYSTEM CONFIG] page. (maximum 10000 data)

4.2 <BIN MEAS> Page

Press [Meas] key and use soft key to enter the [BIN MEAS] page.

Setting Bar: The setting area of bin number display page is roughly same as the [Meas Display] page. These settings include the following 8 items:

- Function [FUNC]
- Range [RANGE]
- Frequency [FREQ]
- Trigger [TRIG]
- Level [LEVEL]
- Speed [SPEED]
- Comparator [COMP]
- Auxiliary bin [AUX]

Comparator results are displayed here using large characters, primary and secondary test results are displayed in this area as small characters.

In the lower half of the screen, some settings related to comparator are displayed in this area.

4.2.1 Comparator Function ON/Off [COMP]

The built-in comparator can sort devices into 9 sets of primary parameters and 1 set of secondary parameters, and classify them into up to 10 kinds of bins (BIN 1~BIN 9 and OUT OF BIN). In addition, a device which primary parameter is within limits, but secondary parameter is not, can be sorted into an auxiliary BIN (AUX).

The comparator is allowed to be turned off.

- - Procedure for setting the comparator function [COMP]
- Step 1 Press the [Meas] key
- Step 2 Press the <BIN MEAS> soft key
- Step 3 Use the cursor key to select [COMP] field
- Step 4

Use the soft keys to turn on/off the comparator

Soft key	Function
OFF	The comparator is turned off and the measurement bar is displayed OFF
ON	The comparator is turned on and the measurement bar shows sorting result
	of the current measurement.

Figure 4-3

Comparator Workflow: Comparator Workflow

Figure 4-4

4.2.2 Auxiliary Bin [AUX] ON/OFF

If you don't need to sort secondary parameters, the auxiliary bin (AUX) can be turned off. After being turned off, the secondary parameter limit will not be determined during the measurement.

- Procedure for turning on/off auxiliary bin:
- Step 1. Press the [Meas] key
- Step 2. Press the [BIN MEAS] soft key
- Step 3. Use the cursor key to select [AUX] field
- Step 4. Use the soft keys to turn on/off the auxiliary bin

Soft key Function	
OFF	Auxiliary bin if turned off
ON	Auxiliary bin if turned on

4.3 <BIN COUNT> Page

When press [Meas] key and [BIN COUNT] soft key, the <BIN COUNT> page appears.

<bin count=""> page</bin>								
<bin co<="" td=""><td>ount></td><td></td><td></td><td>FU</td><td>NC</td><td>Cp-D</td><td></td><td>MEAS</td></bin>	ount>			FU	NC	Cp-D		MEAS
COUNT	٥N			NOMI	NAL	0.00000 p	ιF	DISPLAY
BIN	LOWE	R		UPPE	R	RESUL	.Τ	
1	0.0	%		0.0	%	0		MEAS
2	0.0	*		0.0	*	0		SETUP
3	0.0	*		0.0	%	0		
4	0.0	*		0.0	*	0		BIN
5	0.0	2		0.0	%	0		TABLE
6	0.0	*		0.0	%	0	ļ	
7	0.0	*		0.0	%	0		BIN
8	0.0	*		0.0	%	0		COUNT
9	0.0	*		0.0	*	0		
2nd	0.0			0.0				
		AUX	0		00	28981		
BIN COU	NT pa	age						
		FIL	E	SY	'STEM	E KEY LO)CK	11:03

The <BIN COUNT> page will display the count result of the comparator. Settings bar:

- Bin count
- Information Bar:

The following count values are monitored in the information bar:

- Bin1~Bin9 count value
- 2nd secondary parameter failure number [AUX]
- Unqualified number [OUT]

If the condition is set, it needs to be modified in <BIN TABLE> page.

4.3.1 Counter Function [COUNT]

The instrument counts to the bin pass or fail, the maximum count is 999999, the counting operation stops and the overflow message "-----" appears when this value is reached.

- Set the Counter:
- Step 1. Press the [Meas] key
- Step 2. Press the [BIN COUNT] soft key to enter <BIN COUNT> page
- Step 3. Use the cursor key to select [COUNT] field
- Step 4. Use the soft keys to set counter function

Soft key	Function
COUNT ON	
COUNT OFF	
-	
-	
RESET COUNT	All counts are reset to 0

4.4 <LIST SWEEP> Page

Figure 4-5

The <LIST SWEEP> page will display when you press the [Meas] key and [LIST SWEEP] soft key.

<list sweep=""> page</list>		
<pre><list sweep=""> LOG OFF TPIC MAN MODE SED PANCE FRI AU</list></pre>	πο	MEAS
No. EREDIHZI Co D	CMP	DISPLAT
1 1.000 k 2.30108 pF 6.15635	P	MEAS
2 2.000 k 4.94758 pF 2.60850	P	SETUP
3		LICT
4		TABLE
6		
7		
8		
9	Í	
10 Screen squed		
FILE SYSTEM KE	Y LOCK	98:27

<List Sweep> cycle sweeps 10 groups of frequencies or levels and compare them with the set values to get the comparison result.

On <List Sweep> page, the instrument scans according to the trigger mode.

During a sweep, an asterisk mark (*) will appear on the left side of the sweep point currently being measured and the measurement will be highlighted.

Under this page, users can make the following settings:

- TRIG Trigger mode
- MODE Sweeping method
- RANGE Measurement range
- LOG data record

4.4.1 Sweep Trigger Mode [TRIG]

The instrument sweeps according to the trigger mode. The trigger mode usually uses manual triggering. Therefore, when entering the page, trigger mode is set to manual by default, and it is automatically swept once.

Trig Mode	Function			
INT	Internal Trigger. All ten sweep points are swept continuous.			
MAN	Manual Trigger. Each time the instrument is triggered by [Trig] key, the			
	sweep points are swept one by one.			
EXT	External Trigger. Each time the instrument is triggered by the handler trig			
	pin, the sweep points are swept one by one.			
3US Remote trigger, the instrument receives a trigger command from the RS2				
	interface to scan a test point.			

Table 4-12Sweep trigger mode

Figure 4-6

4.4.2 Sweep [MODE] Setting

The <List Sweep> page completes the scan frequency or level value test of up to 10 list points.

When the test [Method] is set to sequence and [TRIG] is set to manual, the sweep function will automatically execute each test step on the list in sequence until the last step. Users will wait for the trigger button to be pressed.

When the test [MODE] is set to SEQ step and [TRIG] is set to MAN (manual), the sweep function will automatically execute the first test step, then stop and wait for the trigger button to execute the next step.

The instrument sweeps according to the trigger mode. The trigger mode usually uses manual triggering.

 Soft key
 Function

 SEQ
 Trigger will scan all test points at a time.

 STEP
 Trigger only scans one test point at a time.

4.5 <ENLARGE DISPLAY> Page

The full screen display only shows primary and secondary parameters, monitor parameters, and comparator results.

Figure 4-7

- To enter Measure Full Screen Display page :
- Step 1 Press the [Meas] key;
- Step 2 Press the bottom soft key [ENLARGE] to switch to <ENLARGE DISPLAY> page
 - To return back to the normal display page
- Step 1 Press [NORMAL] bottom soft key to return back to the <MEAS DISPLAY> page

5.[Setup] Key

In this chapter users will learn about all the setup features:

- MEAS SETUP page
- CORRECTION page
- BIN TABLE page (Comparator setup)
- LIST TABLE page

You can press the [Setup] key to open the <MEAS SETUP> page.

5.1 <MEAS SETUP> Page

All measurement related settings are operated in the <MEAS SETUP> page.

In <MEAS SETUP> page, the Instrument does not display test result and sorting result, but testing still in progress.

These settings include the following parameters:

- [FUNC] Measurement Function
- [RANGE] Impedance Range
- [FREQ] Measurement Frequency
- [TRIG] Trigger Mode
- [LEVEL] Measurement Level
- [SPEED] Measurement Speed
- [SRC RES] Source Output Impedance
- [AVG] Averaging Factor
- [BIAS] DC voltage bias
- [MON 1] Monitor parameter 1
- [AUTO LCZ] Automatic LCZ Function
- [MON 2] Monitor parameters 2
- [DELAY] Delay time after trigger and before measurement
- [ALC] Automatic Level Control
- [NOMINAL] Nominal value of comparator

NOTE: Some settings can be set in <MEAS DISPLAY> page and <BIN MEAS> page. Please refer Sector 4.1<MEAS DISPLAY> Page to set.

Figure 5-1 </ Column 2 </

 <
KMEAS SET	UP>)p-D	RANGE	[0] AUTO	MEAS DISPLAY
FREU 1 LEVEL 1 SRC RES 1	1.000 kHz 1.00 V 1000	TRIG SPEED AVG	INI SLOW 1	CORREC TION
BIAS 0 AUTO LCZ	OFF OFF	Mon 1 Mon 2	OFF OFF	BIN
ALC 0) ms)FF			LIST
				TABLE
	FILE	SYSTEM	KEY LO	CK 08:21

5.1.1 Source Output Impedance [SRC RES]

The source internal resistance is also called the output impedance.

The Source output impedance can be set to 30 Ω , 50 Ω or 100 $\Omega.$

After the test level Vs is set, the test current is flowing through the device under test (DUT) will be determined by the impedance Zx=Rx+jXx of the DUT and the source internal resistance Rs, namely:

$$Is = \frac{Vs}{\mid Rs + Rx + jXx \mid}$$

Since some measured components such as high-permeability magnetic core inductors will vary in the magnitude of the test current, that is, they have current sensitivity, different internal resistances will inevitably lead to measurement results at the same test level. Output internal resistance selectable function is to facilitate get relatively consistent measurement results for current sensitive devices. The instrument uses two low source output internal resistances, with a default value of 100Ω .

The internal resistance of KEYSIGHT's LCR meter (e.g. E4980A) is 100Ω . Users who need to compare with such instruments need to change the internal resistance of the instrument to obtain data uniformity.

For non-current sensitive, especially low impedance test objects, we recommend using 30Ω source internal resistance.

Procedure for setting source output impedance:

Step 1. Press the [Setup] key to enter <MEAS SETUP> page

Step 2. Use the cursor key to select [SRC RES] field

Step 3.

Use the soft keys to set source output impedance

Soft key	Function
30Ω	30Ω source output impedance, if there is no requirement for source output
	impedance, it is recommended to use 30Ω .
50Ω	50 $Ω$ source output impedance
100Ω	100 Ω source output impedance

5.1.2 Averaging Factor [AVG]

Taking "average" is the most common type of digital filter, the "number" is the depth of the filter. The purpose is to perform multiple measurements and take the average result as the final display value, which can improve the stability and reliability of the measurement results. You can specify the averaging factor from integer 1 to integer 256.

To set up the averaging factor:

Step 1.	Press the [Setup] key
---------	-----------------------

- Step 2. Use the cursor key to select [AVG] field
- Step 3. Use the soft keys or number keys to enter averaging factor.

Soft key	Function
INCR +	Increments the averaging factor in steps of 1, 2, 4, 8, 16, 32, 64, 128 and 256.
DECR -	Decrements the averaging factor in steps of 1, 2, 4, 8, 16, 32, 64, 128 and 256.

5.1.3 DC Bias Voltage [BIAS]

The instrument has built-in -2.5V~2.5V DC bias.

This feature can superimposes a DC bias voltage on the AC signal.

- Procedure for setting DC Bias Voltage:
- Step 1. Press the [Setup] key to enter <MEAS SETUP> page
- Step 2. Use the cursor key to select [BIAS] field
- Step 3. Use the soft keys to select DC bias voltage.

Soft key	Function
OFF	DC Bias Voltage is turned off
2V	Signal source superimposed 2V DC bias
1.5V	Signal source superimposed 1.5V DC bias
-1.5V	Signal source superimposed -1.5V DC bias
-2V	Signal source superimposed -2V DC bias

5.1.4 Auto LCZ Function [AUTO LCZ]

Auto LCZ Function can help you to select a proper measurement parameter, the best equivalent circuit mode, if range is set to AUTO range, the instrument is completely in the smart test state.

- To set up the Auto LCZ Function:
- Step 1. Press the [Setup] key to enter <MEAS SETUP> page
- Step 2. Use the cursor key to select [AUTO LCZ] field
- Step 3. Use the soft keys to turn on/off the Auto LCZ Function.

Soft key	Function
OFF	Turn off the Auto LCZ Function
ON	Turn on the Auto LCZ Function.
	When Auto LCZ Function is set to ON, "AUTO-LCZ" will display on [FUNC]
	field.

NOTE The Auto LCZ Function will be turned off after users reset the measurement function.

5.1.5 Monitor 1 and Monitor 2 [MON 1] [MON 2] Parameter Selection

	The AT381x can monitor the other two parameters.
NOTE	Additional monitoring parameters do not increase instrument processing time.
	The instrument defaults to "Off".
	The monitoring parameters are only displayed on the [Meas Display] page.
	See Table 4-3 for nouns explanation of the monitoring parameters.
	Procedure for setting monitor parameters (monitor 1 and monitor 2 same procedure)
Step 1.	Press the [Setup] key to enter <meas setup=""> page</meas>

- Step 2. Use the cursor key to select [MON 1] or [MON 2] field
- Step 3.

Use the soft keys to choose a parameter

Soft key	Function	
OFF	Turn off the monitor	
Z	Absolute value of impedance	
D	Dissipation factor	
Q	Quality factor(=1/D)	
Vac	Test signal Voltage	
Iac	Test signal Current	
Δ	Absolute deviation value	
Δ%	Relative deviation value	
θr	Phase angle (radian)	
θd	Phase angle	
R	Resistance (=Rs)	
Х	Reactance	
G	Conductance	
Y	Admittance	

5.1.6 Measurement [DELAY]

The instrument can set the delay time before each test by testing [Delay] timer, and wait for the station to be ready before testing.

The maximum delay time is 60s, the minimum delay time is 1ms.

5.1.7 Auto Level Control [ALC]

The ALC function adjusts the voltage and current across the DUT to match the preset voltage and current values. A constant level will be obtained on the device under test without being affected by source internal resistance.

- Procedure for setting ALC:
- Step 1. Press the [Setup] key to enter <MEAS SETUP> page
- Step 2. Use the cursor key to select [ALC] field
- Step 3. Use the soft keys to set constant level

Soft key	Function
OFF	Turn off the ALC function.
ON	Turn on the ALC function.

NOTE When the constant level is turned on, '*' is added at the end of the level setting value, indicating that the constant level function is turned on.

5.1.8 [NOMINAL] Value Setting

For the convenience of setting, when the [Monitor 1] or [Monitor 2] function is set to Δ or Δ %, the nominal value field is displayed on <Setup> page.

This standard value is synchronized with the standard value save of <BIN TABLE> page.

NOTE

5.2 <CORRECTION> Page

When you press [Setup] key and [CORRECTION] soft key, the <CORRECTION> page appears. In this page, the OPEN/SHORT for correcting the stray admittance and residual impedances can be performed.

In order to achieve the accuracy specified by the technical specifications, open circuit clear zero and short circuit clear zero are necessary.

Load calibration refers to the linear correction of the instrument using a known standard, which is usually not required by user.

If replace test fixture or test cable, please re-perform open and short-circuit clear zero.

When the temperature changes dramatically, please perform open circuit and short circuit clear zero in time.

Small range greatly rely on open-circuit clear zero, large range greatly rely on short-circuit clear zero.

The correction function has two kinds of correction methods:

- Calibration based on all frequency points. This calibration provides full open and short circuit correction for all frequency points in the entire frequency range.
- Based on the calibration of specified frequency point, it supports open circuit correction, short circuit correction and load calibration for 3 user point frequencies.

In <CORRECTION> page, you can configure each of the following controls with the cursor placed in the corresponding field:

- [OPEN TEST]- including full frequency point open circuit correction
- [SHORT TEST] including full frequency point short circuit correction
- [SPOT 1] including open circuit and short circuit correction
- [SPOT 2] including open circuit and short circuit correction
- [SPOT 3] including open circuit and short circuit correction

Figure 5-2

5.2.1 Open Correction [OPEN]

The instrument open circuit calibration function compensates for any stray admittance (G, B) that may exist between the calibration surface determined by the length of the test cable and the connection point of the device under test.

Figure 5-3 Stray Admittance

[Open] correction will completely correct the typical frequency of the instrument. These frequency points vary depending on the instrument version:

For these typical frequencies, please refer to the test frequency "List of frequently used frequencies".

To perform open correction

Step 1

Step 2

Press the [Setup] key, then press [CORRECTION] to enter <CORRECTION> page.

Use the cursor key to select [OPEN TEST] field

Soft key	Function
OFF	Disables open correction. The clear value does not participate in
	the measurement operation.
MEAS OPEN	Perform open correction for full frequency and DCR
DCR OPEN	Perform DCR open correction only.

Step 3 Press [MEAS OPEN] soft key, a dialog message display "Open-circuit the test terminals" .

Step 4 After pressing [OK], the instrument starts to perform correction.

When correcting, there will be a progress bar prompt at the bottom of the page, and the "Trig'd" indicator will flash.

After the correction is completed, the progress bar disappears.

During correction, users can cancel the correction at any time by pressing the [Abort] button.

5.2.2 Short Correction [SHORT]

The short correction feature of the AT381x compensates for any residual impedances (R,X) that may exist within the interval from the calibration plane, which is determined by the selected cable length, to the DUT connecting points. (See Figure 5-4)

Figure 5-4

Residual Impedances

To perform short correction:

Press the [Setup] key, then press [CORRECTION] to enter <CORRECTION> page.

Step 1 Step 2

Use the cursor	key to select [SHORT] field

Soft key	Function
OFF	Disables short correction. The clear value does not participate in the
	measurement operation.

	MEAS SHORT Perform short correction for full frequency and DCR				
	DCR SHORT	Perform DCR short correction only.			
Step 4	Press [MEAS SHORT] soft key, a dialog message display "Short-circuit the test terminals" .				
Step 5	Short-circuit the test fixture with a shorting piece, or clamp the test cable together, do n				
	place any tested parts, and do not touch anything.				
Step 6	instrument starts to perform correction.				
	When correcting, there will be a progress bar prompt at the bottom of the page, and the "Trig'd" indicator will flash.				
	ompleted, the progress bar disappears.				
	During correction, users can cancel the correction at any time by pressing the [Abort] button.				
5.2.3	2, 3 Correction [SPOT 1] [SPOT 2] [SPOT]				
	Correction based on correction at user-speci	specified frequency spots involves performing open/short/load field frequency points. There are 3 frequency spots you can specify.			

To specify frequency spots and perform correction

- Step 1 Press the [Setup] key, then press [CORRECTION] to enter <CORRECTION> page.
- Step 2 Use the cursor key to select [SPOT 1] [SPOT 2] [SPOT3] field
- Step 3 Use the soft keys to select or directly enter the frequency value, frequency that is not within the instrument's characteristic frequency will be approximated to the typical frequency. If the current frequency point is is turned off before:

Soft key	Function		
ON	Enable this frequency correction point		
CURRECT FREQ	CURRECT FREQ Specify the frequency being used as the current frequency spot value		
If the current frequency point is is turned on before:			

Soft key	Function	
OFF	Disable this frequency correction point	
CURRECT FREQ	Specify the frequency being used as the current frequency point value	
MEAS OPEN	Individually perform open correction for this set frequency	
MEAS SHORT	Individually perform short correction for this set frequency	

Step 4

Press [MEAS OPEN] soft key to perform an open-circuit correction Or, Press [MEAS SHORT] to perform a short-circuit correction.

5.3 <BIN TABLE> Page

Press [Setup] key and press [COMP setup] soft key to open <BIN setup> page.

This page allows you to configure the AT381x's built-in comparator.

AT381x's built-in comparator can sort DUTs into a maximum 11 levels (BIN1 through BIN9, AUX and OUT) using up to nine sets of primary parameter limits along with one set of secondary parameter limits.

In addition, the comparator has a bin count function that counts up to 999,999 DUTs.

To take full advantage of the comparator, AT381x was equipped a handler interface for use in conjunction with the comparator, all of these bins signal can output to yours PLC via the handler interface.

In the <COMP Setup> page, you can configure each of the following controls with the cursor

placed in the corresponding field.

- [FUNC] Select to set the primary and secondary parameters
- [COMP] Comparator ON/OFF
- [NOM] The nominal value
- [BEEP] Beep feature
- [MODE] Absolute value comparison, percentage comparison or direct reading comparison
- [AUX] Auxiliary bin (2nd parameter) ON/OFF
- [#-BINS] Select the total bins

<BIN TABLE> page

	10	
<bin table=""></bin>	FUNC Cp-D	MEAS
COMP ON NOM	0.00000 pF BEEP OFF	DISPLAY
MODE PER AUX	ON	\models
9-BINS LOWER	UPPER	MEAS
1 0.0000	3 % 0.00000 %	SETUP
2 0.0000	3 % 0.00000 %	
3 0.000	3 % 0.00000 %	BIN
4 0.0000	3 % 0.00000 %	MEAS
5 0.0000	3 % 0.00000 %	
6 0.0000	3 % 0.00000 %	BIN
7 0.0000	3 % 0.00000 %	COUNT
8 0.0000	3 % 0.00000 %	
9 0.0000	3 % 0.00000 %	
2nd 0.0000	0.0000	
BIN SETUP Page		
I FILF	SYSTEM LIKEY LOCK	Ø8•19

5.3.1 Measurement Function [FUNC]

The instrument can be independently set up for all test functions and stored in internal memory space.

Before setting the comparator parameters, select the consistent test [FUNC] according to the parameters set in the <MEAS DISPLAY> page.

5.3.2 Comparator Function ON/OFF [COMP]

AT381x's built-in comparator can sort devices into a maximum of 10 bins (BIN1 to BIN9 and OUT OF BIN) using a maximum of nine pairs of primary parameter limits and one pair of secondary parameter limits. In addition, a device which primary parameter is within limits, but secondary parameter is not, can be sorted into an auxiliary bin (AUX).

The comparator is allowed to be turned off.

- Procedure for turning on/off the comparator function [COMP]:
- Step 1. Press the [Setup] key
- Step 2. Press the [BIN TABLE] soft key and then enter <BIN TALBE> Page.
- Step 3. Use the cursor key to select [COMP] field
- Step 4. Use the soft keys to turn on/off the comparator.

Soft key	Function	
OFF	The comparator is turned off and the measurement bar is displayed OFF	
ON	The comparator is turned on and the measurement bar shows the sorting	
	result of the current measurement.	

NOTE The comparator is turned off and the bin count is stopped, regardless of whether the bin count is on or off.

5.3.3 Compare [Mode]

The compare mode is only for the primary parameters. There are three compare modes for the built-in comparators:

- Absolute value Δ
- Relative value ∆%
- Direct reading value SEQ
- Absolute value Δ and relative value Δ % mode:

Absolute value \vartriangle and relative value $\vartriangle\%$ mode is called tolerance mode. Its principle is as follows:

Figure 5-6 Tolerance mode

Among them :

Nominal value: The tolerance mode requires input of the nominal value.

- Includes this point
- Excludes this point

Absolute value Δ = measured value – nominal value

Percent Δ % = (measured value - nominal value) / nominal value × 100% Example of sorting in tolerance mode

Figure 5-7

- Excludes this point
- Sequential mode:

Sequential mode:

- Includes this point
- Excludes this point

In sequential mode, the comparison uses the direct reading measurement value to compare with the upper and lower limit ranges of the bin. The nominal value does not need to participate in operation.

To set up the compare mode:

Step 1 Enter the <BIN TABLE> page.

- Step 2 Use the cursor key to select [MODE] field
- Step 3 Use the soft keys to select comparator mode

Soft key	Function	
ABS	Absolute parameter values	
PER	Deviation percentages.	
SEQ	Sequential mode.	

5.3.4 Nominal Value for tolerance Mode [NOM]

You must configure the nominal value when you use tolerance mode as the limit mode for the primary parameter.

In sequential mode the nominal value does not affect sorting. In sequential mode you can configure nominal value or not.

NOTE When using negative nominal values, be sure to set the lower limit to a value higher than the upper limit because when they are converted to absolute values, the lower limit becomes higher than the upper limit.

The nominal value entered corresponds to the primary parameter of the test [Function].

To enter the nominal value:

- Step 1 Enter the <BIN TABLE> page.
- Step 2 Use the cursor key to select [MODE] field
- Step 3 Use the numeric keys to enter data, the unit is selected by using soft keys.

5.3.5 Auxiliary Bin ON/OFF [AUX]

If the user does not need to sort the secondary parameters, the auxiliary bin (AUX) can be turned off.

After shutting it down, the secondary parameter limit will not be determined during the measurement.

To turn on/off auxiliary bin:

- Step 1 Enter the [BIN TABLE] Page
- Step 2 Use the cursor key to select [AUX] field

Step 3

	Use the soft keys to turn on/off auxiliary bin		
Soft key Function		Function	
OFF Auxiliary bin is off		Auxiliary bin is off	
	ON	Auxiliary bin is on	

5.3.6 [BEEP] Feature

The beep feature allows for a GD beep, NG beep, or beep OFF

To set up the beep feature

- Step 1 Enter the <BIN TABLE> page.
- Step 2 Use the cursor key to select [Beep] field

Step 3 Use the soft keys to set up beep feature

Soft key	Function		
OFF	Beep is off		
PASS	Beep when the comparator sorting result is OK		
FAIL	Beep when the comparator sorting result is NG		

5.3.7 Total Number of Bins [#-BINS]

AT381x specify nine bins (1-BINS to 9-BINS). Please set number of bins according to your own requirements and close the extra bins.

- Step 1 Enter the <BIN TABLE> page.
- Step 2 Use the cursor key to select [#-BIN] field
- Step 3 Use the soft keys to set up total number of bins

Soft key	Function		
Total 1 bin	Only 1 bin for OK bin		
Total 9 bins	Turn on all 9 OK bins		

5.3.8 Lower and Upper Limits Setup

AT381x's built-in comparator can sort DUTs into a maximum 10 bins using up to nine sets of primary parameter limits alone with one set of secondary parameter limits.

Please enter the absolute value of the primary parameter for the "absolute value (Δ)" comparison mode, the unit is the primary parameter unit.

Please enter the relative value of the primary parameter for the "relative value (Δ %)" comparison mode, the unit is %.

Please enter the sequential mode of the primary parameter for the sequential value SEQ comparison mode, the unit is the primary parameter unit.

The upper and lower limits of the secondary parameters are always sequential g values, regardless of the comparison mode.

- Enter the limit value by using the entry keys.
- Step 1 Enter the <BIN TABLE> Page.
- Step 2 Use the cursor key to select [1] [LOWER] field;
- Step 3 Input value

Relative value $\Delta\%$ mode does not need to select unit magnification, please enter a

	percentage value.
	Absolute value ${\scriptscriptstyle \Delta}$ and sequential value SEQ mode use the soft keys to select the unit.
Step 4	Use the cursor key to select [1] [UPPER] field;
Step 5	Input value
Step 6	Repeat 2~5 to complete the data input of other bins.
	The instrument prepares independent storage space for the three comparison modes, so the comparator data in each comparison mode is independent of each other.
	In order to be able to sort properly, increase the Bin1 to Bin9 intervals in the tolerance mode. Please increase the Bin1 to Bin9 data range in sequential mode.
NOTE	After all settings are completed, if you want to use it for a long time, please enter the [File] page to save the data in the file.
	The instrument does not judge whether the data input by users is reasonable. For example,
	the lower limit is higher than the upper limit, or the bin between bin is overlapped. Please check the setting result carefully to prevent the sorting error.

5.4 <LIST TABLE> Page

Press the [Setup] key and press [LIST TABLE] soft key to open the <LIST TABLE> page. The list sweep feature of AT381x can perform automatic or manual sweep measurement by sweeping the frequency, signal level through a maximum 10 groups of frequencies or levels.

Before using list sweep feature, you have to configure the sweep list.

In the <LIST TABLE> page, you can configure each of the following list sweep measurement controls with the cursor placed in the corresponding field:

- Sweep Function [FUNC]
- Sweep mode [MODE]
- Sweep parameter selection [FREQ[Hz], LEVEL[V]]
- Sweeping point setup
- Limit parameter ([LMT]) selection (primary parameter [A], secondary parameter [B], no comparison [-])
- Input lower and upper limits [LOWER] [UPPER]

Figure 5-9 <LIST TABLE> Page

<l19< th=""><th>ST TABL</th><th>E></th><th>FUNC</th><th>Cp-D</th><th>MEAS</th></l19<>	ST TABL	E>	FUNC	Cp-D	MEAS
			MODE	SEQ	DISPLAY
No.	FREQ[H	z] LMT	LOWER	UPPER	
1	OFF		0.00000	0.00000	MEAS
2	OFF		0.00000	0.00000	SETUP
3	OFF		0.00000	0.00000	
4	OFF		0.00000	0.00000	LIST
5	OFF		0.00000	0.00000	SWEEP
6	OFF		0.00000	0.00000	
-7-	OFF		0.00000	0.00000	
8	OFF		0.00000	0.00000	
9	OFF		0.00000	0.00000	
10	OFF		0.00000	0.00000	
LIST	SETUP	Page			
		FILE	SYSTE	M KEY LI	JCK 08:17

5.4.1 Sweep Mode [MODE]

The AT381x sweeps according to the trigger mode.

Table 5-1

Sweep mode description		
Mode	Function	
SEQ	Internal Trigger. All ten sweep points are swept continuous.	

5.4.2 List Sweep Parameters Setup

The sweep parameter used in list sweep measurement can be measurement frequency and signal level. Use the sweep point field to specify the list sweep measurement parameter.

- To select the list sweep measurement parameter
- Step 1 Enter the [LIST TABLE] page.
- Step 2 Use the cursor key to select FREQ[Hz] or LEVEL[V] field;
- Step 3 Use the soft keys to select list sweep parameter.

Soft key	Function
FREQ[Hz]	Uses frequency as the list sweep parameter
LEVEL[V]	Uses voltage as the list sweep parameter

5.4.3 Configure the Sweep Points

AT381x's List sweep measurement feature supports up to 10 sweep points as well as measurement limit values. Each of sweep point can be turned on or off.

To configure the sweep points

- Step 1 Enter the [LIST TABLE] page.
- Step 2 Use the cursor key to select any sweep point from 1~9;
- Step 3 Turn sweep points on or off or enter sweep point data (frequency or level)

Soft key	Function
ON	Turn on current point
OFF	Turn off current point
LIST MEAS	Enter <list meas=""> Page</list>

5.4.4 Limit parameters [LMT] selection

AT381x can compare the primary parameter or the secondary parameter limit while sweeping, and give a PASS or FAIL conclusion.

- Procedures for limit setting
- Step 1 Enter the [LIST TABLE] page.
- Step 2 Use the cursor key to select [CMP] of any sweep point from 1~10; Note that the current sweep point needs to be turned on.

Step 3	Use the soft keys to select				
	Soft key	Function			
	Primary parameter [A]	Uses the primary parameter as the comparison parameter			
	Secondary parameter [B]	Uses secondary parameter as comparison parameter			
	Not compare [-]	Do not compare			
5.4.5 Input [LOWER] and [UPPER] Limits Value					
	Each sweeping point has	a set of upper and lower limits, which may be a sequential range of			
	the primary parameter A or the secondary parameter B.				
NOTE	The primary parameter A and secondary parameter B multiplex the same storage space to				
NOTE	store upper and lower limits.				
	Procedures for setting	ng [Lower] and [Upper] Limits:			
Step 1	Enter the [LIST TABLE] page				
Step 2	Use the cursor key to sele	ect [Lower] and [Upper] Limits of any sweep point from 1~10; Note			
	that the current sweep po	pint needs to be turned on.			
Step 3	Use the soft keys to selec	t the unit			
NOTE	The instrument prepares s frequency and level are in After all settings are com page to save the data in th	eparate memory for the sweep parameters, so the sweep list data for dependent of each other. pleted, if you want to use it for a long time, please enter the [File] e file.			

6.System Configurations

This section includes the following information:

- SYSTEM CONFIG page
- SYSTEM INFO page
- SYSTEM SERVICE page

When press the [Meas] or [Setup] key followed by [SYSTEM] bottom soft key, the <SYSTEM CONFIG> page appears.

6.1 <SYSTEM CONFIG> Page

Under the [Meas] or [Setup] page, press [System] to enter the <SYSTEM CONFIG> page. Following information can be configured in the <SYSTEM CONFIG> page.

- [LANGUAGE]
- System date and time configuration [DATE/TIME]
- Account settings [ACCOUNT]
- Key Beep setting [KEY BEEP]
- Beep tone [TONE]
- RS-232 Baud rate setting [BAUD]
- Remote Communication [PROTOCOL] SCPI/MODBUS
- SCPI [TERMINATOR]
- SCPI [HAND SHAKE]
- SCPI [ERROR CODE]
- SCPI [RESULT] upload
- [DATA BUFFER] Set the maximum cache value for the data logging function
- [DEFAULT SET] Restore to factory settings

All settings in <SYSTEM CONFIG> page will be automatically saved in the system and will be automatically loaded next time when AT381x is turned on.

Figure 6-1	<system< th=""><th>4 CON</th><th>VFIG</th><th>> Page</th><th>•</th><th></th></system<>	4 CON	VFIG	> Page	•	
C .	<system conf<="" td=""><td>IG></td><td></td><td></td><td></td><td>SYSTEM</td></system>	IG>				SYSTEM
	LANGUAGE	ENGLIS	H			INFO
	DATE/TIME	2019-0	3-26	13:49	:58	
	ACCOUNT	ADMINI	STRATO	IR PASSW	'ORD	SYSTEM
	KEY BEEP	ON		TONE	LOW	SERVICE
	BAUD	115200		PROTOCOL	SCPI	
	TERMINATOR	LF				
	HAND SHAKE	OFF				
	ERROR CODE	OFF				
	RESULT	FETCH				
	DATA BUFFER	10000	SETS			
	DEFAULT SET	OFF				
	SYSTEM CONFI	G Page				
			R	eturn	KEY LOCK	13:49

The AT381x has two accounts, administrator and user:

- Administrator: All functions can be configured by administrator except <SYSTEM SERVICE> page.
- User: All functions can be configured by user except < SYSTEM SERVICE> page and <FILE> page.

To Change Account :

Step 1 Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page Step 2 Use the cursor key to select [ACCOUNT] field

Use the soft keys to set. Step 3 Soft key Function ADMIN Administrator USER User

To Change Administrator's Password

Step 1 Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page Use the cursor key to select [ACCOUNT] field Step 2

Use the soft keys to set. Step 3

Soft key	Function
CHANGE PWD.	Input password (less than 9 numbers).
DELETE PWD.	The password will be removed.

6.1.4 Key Beep Setting [KEY BEEP]

The key beep can be turned off.

- Step 1 Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [KEY BEEP] field

Step 3 Use the soft keys to set.

Soft key	Function
ON	Turn on the key beep feature
OFF	Turn off the key beep feature.

6.1.5 **Beep Tone Setting [TONE]**

The beep tone setting allows beep tone to be set LOW or HIGH volume.

To set up the beep tone

- Step 1 Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page Use the cursor key to select [TONE] field Step 2
- Use the soft keys to select Step 3

Soft key	Function	
HIGH	Beep tone is set to high volume (louder)	
LOW	Beep tone is set to low volume (softer)	

6.1.6 **RS-232 Baud Rate Setting [BAUD]**

The instrument has built-in RS-232 interface. After sensing the signal conversion of the RS-232 interface, the instrument immediately communicates with the host at the set baud rate, and the keyboard is locked.

Before you can control the AT381x by issuing RS-232 commands from built-in RS-232 controller connected via its DB-9 connector, you have to configure the RS-232 baud rate. If host computer and the instrument's baud rate is different, it will not be able to communicate correctly.

The AT381x's built-in RS-232 interface uses the SCPI protocol or MODBUS (RTU).

RS-232 configuration is as follows:

- Data bits: 8-bit
- Stop bits: 1-bit •
- Parity: none
- Baud Rate : configurable

To set up the baud rate:

- Step 1 Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [BAUD] field
- Step 3 Use the soft keys to select.

Soft key	Function
1200	Use this baud rate if you are using a communication converter with
	optocoupler isolation.
9600	
38400	
57600	
115200	Recommend, system default.

6.1.7 Communication Protocol Settings [PROTOCOL]

The instrument supports two communication protocols: SCPI and Modbus (RTU).

SCPI: Standard instrument communication protocol, ASCII transmission, suitable for host computers, advanced equipment such as computer and industrial computer.

MODUBS: Industrial field bus protocol, binary transmission, suitable for host PLC and touch screen devices.

To set up the communication protocol:

- Step 1 Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [PROTOCOL] field
- Step 3 Use the soft keys to select.

Soft key	Function
SCPI	ASCII transmission
MODBUS	RTU, Binary transmission

6.1.8 SCPI [TERMINATOR] Setting

The AT381x supports multiple terminators: LF(ASCII :0x0A), CR(ASCII :0x0D), CR+LF(ASCII: 0x0D 0x0A).

The host data received by the instrument may not use the terminator, and the data sent by the instrument to the host will always end with the specified terminator.

NOTE The instrument allows the host to send instructions without a terminator, but it is recommended to add a terminator at the end of the command. Otherwise, it will cause a timeout wait after each command is received (the command timeout is 10ms~50ms depending on the baud rate). This setting is valid only under the SCPI protocol.

To set up the terminator:

- Step 1
 Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page
- Step 2 Use the cursor key to select [Terminator] field
- Step 3 Use the soft keys to select.

Soft key	Function
LF	ASCII: 0x0A
CR	ASCII: 0x0D
CR+LF	ASCII: 0x0D 0x0A

6.1.9 SCPI [HANDSHAKE] ON/OFF

After the handshake is turned on, the instrument will return all the received data to the host as it is.

■ To set up the command handshake ON/OFF:

Step 1Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> pageStep 2Use the cursor key to select [Command Handshake] field

Step 3 Use the soft keys to select.

Soft key	Function	
OFF		
ON		

NOTE This setting is valid only under the SCPI protocol.

6.1.10 SCPI [ERROR CODE] ON/OFF

When the error code is turned on, the AT381x will return the execution result of each instruction to the host.

When the instruction is a query, the execution will return the result of the query correctly, and the execution error will return an error code.

When the instruction does not need to return a value, the execution will return *E00 correctly, and the execution error will return an error code.

Table 6-1

SCPI error code			
Error code	Description	Explanation	
*E00	NO ERROR	No error	
*E01	BAD COMMAND	Command error	
*E02	PARAMETER ERROR	Parameter error	
*E03	MISSING PARAMETER	Missing parameters,	
		With parameter commands, no parameters	
		are provided	
*E04	INPUT BUFFER OVERRUN	Receive buffer overflow, the maximum buffer	
		of the AT381x is 1000 bytes	
*E05	SYNTAX ERROR	Syntactic error	
*E06	INVALID SEPARATOR	Invalid separator	
*E07	INVALID MULTIPLIER	Invalid multiplier	
*E08	BAD NUMERIC DATA	Value error	
*E09	VALUE TOO LONG	The value is too long, the numeric parameter	
		exceeds 20 bytes	
*E10	INVALID COMMAND	Invalid command, the command is invalid	
		under certain conditions	
*E11	UNKNOWN ERROR	Other unknown errors except the above errors	

■ To set up the error code ON/OFF:

Step 1

Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> page

Step 2 Use the cursor key to select [Error Code] field

Step 3 Use the soft keys to select.

Soft key	Function	
OFF	Will not return error code	
ON	Return an error code	

NOTE This setting and function is valid only under the SCPI protocol.

6.1.11 SCPI [RESULT] Setting

When the result sending function is set to automatic, the data for each measurement is automatically sent to the host.

■ To set up the result send:

Step 1Press the [Meas] or [Setup] key and then press [SYSTEM] TO enter <SYSTEM CONFIG> pageStep 2Use the cursor key to select [Result Send] field

Step 3 Use the soft keys to select.

Soft key	Function
FETCH	The test result will be sent back by sending "fetch?" instruction.
ON	The test result will be sent back after measuring.

NOTE This setting and function is valid only under the SCPI protocol.

6.1.12 [DATA BUFFER]

Set the maximum data buffer value for the data logging function. The AT381x can set up to 10000 sets of buffer data. After the cache setting value is reached, the data record will stop. This data can be saved into the external USB disk. Please refer to the [LOG] field in the <MEAS DISPLAY> page.

6.1.13 Restore to [DEFAULT SET]

[DEFAULT SET] setting option allow user settings to be restored to factory settings.

6.2 System Information Page

Press [Meas] or [Setup] key, press the [SYSTEM] key at bottom to enter the <SYSTEM CONFIG> page, press the soft key to select [SYSTEM INFO].

There are no configurable options in the system information page

```
< SYSTEM INFORMATION> page
 SYSTEM INFORMATION>
                                              YSTEM
            AT3816A Precision LCR Meter
                                            CONFIG
SERIAL NO.
            1811007
                                            SYSTEM
SERVICE
FW VERSION REV A7.10
 IS VERSION
            V4.20
            REV F0
            REV C6
 JSB I/F
            REV.B0
BIAS MODULE INSTALLED
HANDLER I/F INSTALLED
                               | KEY LOCK
                      RETURN
```

Figure 6-2

< 5 Y

7.File Operation

This chapter provides information on the file operation of the AT381x.

The AT381x has built-in non-volatile memory, users can save system configuration data and user data in this memory. The system's built-in memory can save 10 configuration files. If you have the USB memory interface option installed, the data can also be saved in an external USB memory. With USB memory, you can save up to 999 measurement results files in addition to 10 sets of configuration files.

7.1 <FILE> Page

When press the [Meas] or [Setup] key followed by [FILE] soft key at bottom, the <FILE> page appears.

Figure 7-1

<fil< th=""><th>E> Page</th><th></th></fil<>	E> Page	
<file> MEDIA</file>	INTERNAL AUTO RECALL FILE 0	MEAS DISPLAY
NO.	DESCRIPTION	MEAS
0 🔶	<system default=""></system>	SETUP
1	EMPTY	
2	EMPTY	
3	EMPTY	
4	EMPTY	
5	EMPTY	
6	EMPTY	
7	EMPTY	
8	EMPTY	
9	EMPTY	
FILE p	age	
	RETURN KEY LOCK	16:06

In <FILE> page, users can set the following functions:

- [MEDIA] selection internal memory or external USB memory
- [AUTO RECALL] Recall file 0 or last used file at boot
- [AUTO SAVE] on/off Save the modified data to the current file automatic.
- Soft key [SAVE] Save the current setting data to the current file immediately
- Soft key [RECALL] Load current file data into the system immediately
- Soft key [ERASE] Erase current file data and restore to factory settings.
- Soft key [MODIFY DES] Rename the file description.

7.1.1 [MEDIA] Selection

Select internal memory or external USB storage.

USB memory function cannot be enabled if the USB memory interface is not installed

Procedures for selecting [MEDIA]

- Step 1 Press the [Meas] or [Setup] key followed by [FILE] soft key at bottom and then enter <FILE> page.
- Step 2 Use the cursor key to select [MEDIA] field
- Step 3 Use the soft keys to select.

	Soft key	Function	
		MORY Internal flash memory	
	MEMORY	osb storage	
7.1.2	Recall a File	at Startup [AUTO RECALL]	
	Users can recal field.	I file 0 or current file at the instrument starts up by setting the [AUTO RECALL]	
	To select auto	recall file	
Step 1	Press the [Mea page.	s] or [Setup] key followed by [FILE] soft key at bottom and then enter <file></file>	
Step 2	Use the cursor	key to select [AUTO RECALL] field	
Step 3	Use the soft ke	ys to select.	
	Soft key	Function	
	File 0	The data of file 0 is always loaded when startup.	
	Current file	The data of the current file is loaded when startup.	
7.1.3	Auto save d	ata to last file [AUTO SAVE]	
	You can save th	ne modified data into last used file when the instrument power key is pressed.	
	To turn on/off	the AUTO SAVE function	
Step 1	Press the [Mea	s] or [Setup] key followed by [FILE] soft key at bottom and then enter <file></file>	
	page.		
Step 2	Use the cursor	key to select [AUTO SAVE] field	
Step 3 Use the soft keys to select. Soft key Function		ys to select.	
		Function	
	ON	Auto save function will be enabled. The data will be saved after the power	
		key pressed.	
	OFF	Turn off the auto save function.	
7.1.4	File operation		
	To choose a fil	e to operate	
Step 1	Press the [Mea	s] or [Setup] key followed by [FILE] soft key at bottom and then enter <file></file>	
	page.		
Step 2	Use the cursor key to select [FILE] field		
Step 3	Use the soft keys to select.		
	Soft key	Function	
	SAVE	Save user configuration data into current selected file.	
RECALLLoad current file data into the systemERASEDelete all data of the current file, and the file is all		Load current file data into the system	
		Delete all data of the current file, and the file is also cleared at the same time.	
	MODIFY DES	Modify the file description.	
NOTE	Deleted files, if	automatically recalled at startup, the system will create a file with factory	
NUTE	settings.		

8. Handler Interface

This chapter provides information of AT381x's built-in handler interface. Include:

- Pin Assignment
- Circuit Diagram
- Timing Chart

The instrument provides user with a full-featured processor interface that includes 14 bins sorting output, IDX (AD conversion end signal), EOM (test completion signal), TRIG (external trigger start) input, comparator record number input signal, etc. Through this interface, the AT381x can easily perform automatic control functions with user system control components.

8.1 Pin Assignment

Table 8-1

Output Terminal (All signals are valid low level)
 Description of Handler Interface Output Signals

Pin	Pin Name	Signal Description	Level State
1	O_BIN_1	BIN1 Output (OK)	Active low
2	O_BIN_2	BIN2 Output (OK)	Active low
3	O_BIN_3	BIN3 Output (OK)	Active low
4	O_BIN_4	BIN4 Output (OK)	Active low
5	O_BIN_5	BIN5 Output (OK)	Active low
6	O_BIN_6	BIN6 Output (OK)	Active low
7	O_BIN_7	BIN7 Output (OK)	Active low
8	O_BIN_8	BIN8 Output (OK)	Active low
9	O_BIN_9	BIN9 Output (OK)	Active low

14	O_S_OVER	Secondary parameter output	Active low ,
		(NG)	AUX function is turned on
15	O_P_OVER	Primary parameter output	Active low
		(NG)	
19	O_P_HI	Main measuring output (over	Active low
		higher limit)	
20	O_P_LO	Main measuring output (over	Active low
		lower limit)	
21	O_NG	BUS output (NG)	Active low
22	O_INDEX	ADC in conversion	Active high
23	O_EOM	Measurement in conversion	Active high

Input Terminal

Table 8-2

Description of Handler Interface Input Signals

1		1 0
Pin	Name	Signal Description
24	I_E_TRIG	External input, valid rising edge
25	I_K_LOCK	Keyboard lock signal. Low level keyboard locked, high
23		level or floating unlocked.

Table 8-3

Power Rating

Description of Handler Interface Power Rating Signals

1			
	Pin	Name	Signal Description
16,18 GND External power supply COM terminal		External power supply COM terminal	
	17	VCC	External power supply VCC input

8.2 How to Connection

Use external power supply (recommended)

Please connect the external power supply to the following pins at the same time: VCC : Pin-17

GND : Pin-16 , 17

Electrical Characteristics

Power supply : +12.4V~36VDC , 0.2A (minime	um)
---	------

Output signal :The collector output of the built-in pull-up resistor. Optocoupler isolation.Input signal :Optocoupler isolation.

Note: To avoid damage to the interface, do not exceed the power supply voltage requirements.

To avoid damage to the interface, wire the instrument after it has been turned off. If the output signal is used by users to control the relay, the output optocoupler can only push the small signal relay. The relay must use the reverse energy release diode. If you need to push the high power relay, please increase the triode to push.

Input terminal schematic

Typical Circuit Diagram of Handler Interface Input signals (Trig)

Figure 8-2

Output terminal schematic

Typical Circuit Diagram of Handler Interface Output signals (sorting , IDX , EOM)

Maximum source current : 5mA Maximum reverse current : 50mA

8.3 Timing Chart

Recommended signal input and output timing chart

The AT381x completes one sampling and is completely controlled by an external device (PLC, etc.).

Figure 8-4

Handler Interface 61

Time	Description		Minimum
T1	Trigger pulse w	<i>r</i> idth	1ms
TO	Measurement	Trigger delay time	<10µs
12	cycle		
T3	ADC time		(Related to measurement speed)
T4	Operation time		1ms
T5	Comparator result delay time		200µs
T6	Await next trigger		0μs

9.Remote Control

This chapter provides the following information:

- About RS-232 Interface
- RS-232 Connection
- Select Baud Rate.
- About SCPI

AT381x can use the RS-232 interface to communicate with the computer to complete all the instrument functions. With standard SCPI commands, users can also easily create a variety of acquisition systems that are suitable for them.

9.1 About RS-232C

RS-232 is a widely used serial communication standard, also known as asynchronous serial communication standard, for data communication between computers and computers, between computers and peripherals. RS is the English abbreviation of "Recommended Standard", and 232 is the standard number. The standard is officially published by the Electronic Industries Association (EIA) in 1969. It is required to transmit one bit at a time via one data line.

Most serial port configurations are usually not strictly based on the RS-232 standard: 25-pin connectors are used on each port (now computers basically use 9-pin connectors). The most commonly used RS-232 signals are shown in the table:

Signal	Sign	9-pin connector pin number
Send	TXD	2
Receive	RXD	3
Ground	GND	5

Table 9-1Minimum subset of the RS-232 standard

9.1.1 RS232C Connection

Figure 9-1 RS-232 interface on the rear panel [male]

Recommendation: To avoid electrical shock, turn off the AT381x when connect or disconnect the connector.

■ AT381x default communication settings:

Transmission method: Full-duplex asynchronous communication with start and stop

bits

Data bits: 8-bit Stop bits: 1-bit Parity: none

9.1.2 How to Connect

RS-232 interface on the rear panel [male]

The RS-232 serial interface can be interconnected with a serial interface of a controller (eg PC or IP) via a 2-3 crossed DB-9 cable.

9.2 Protocol

The AT381x supports two communication protocols: SCPI and Modbus (RTU).

9.3 SCPI Protocol

SCPI is the abbreviation of Standard Commands for Programmable Instruments: SCPI. The SCPI protocol defines a set of standard syntax and commands for controlling programmable test and measurement instruments. SCPI commands are transmitted using ASCII strings and passed to the instrument through the physical transport layer. Commands consist of a series of keywords, and some need to include parameters. In the agreement, the order is defined as

follows: CONFigure. In use, you can write a full name, or just write an abbreviation that only contains uppercase letters. The instrument's feedback to the query command is also ASCII code. In fact, for simple applications (such as PLC), you only need to translate the commands into HEX bytes and then transfer them in bytes.

9.3.1 Modbus (RTU) Protocol

The Modbus protocol is a general-purpose language applied to electronic controllers and is mainly used for BUS protocols in industrial fields. It is the communication standard for industrial control equipment such as PLC and touch screen.

10. SCPI Command Reference

This chapter contains the following information:

- Command parser rules of the command parser.
- Command syntax command line writing rules
- Query syntax writing rules of query command
- Query response format of the query response
- Command reference

This section provides all SCPI commands used by the AT381x. With these SCPI commands, you can complete control over all functions of the instrument.

10.1 Handshake Protocol

Since the AT381x uses the minimum subset of the RS-232 standard and does not use hardware handshaking signals, the AT381x can use software handshaking in order to reduce possible data loss or data errors in communication. High-level language software engineers should strictly follow the handshake below agreement to make preparation of computer communication software:

- Instrument terminator only accepts ASCII format, command response also returns ASCII code.
- Command string that sent by host must be ended with LF/CR/LF+CR mark, instrument terminator will begin performing command string only after it receives end mark.
- Instrument can set command handshake: instrument will return an identification code after it receives command and finishes processing.

If the host cannot accept the data returned by the instrument, you can try to solve it by using the following methods:

1. The software handshake is turned off, please refer to the <SYSTEM CONFIG> page of the instrument to turn it on.

- 2. The serial port connection is faulty, please check the cable connection.
- 3. The communication format of the high-level language program on the computer side is incorrect. Try on checking the serial port number, whether the communication format is correct, and the baud rate is the same as the instrument setting.

4. If the instrument is parsing the last command and the host cannot receive the response from the instrument, please try again later.

10.2 Terminator

The AT381x supports 4 terminators:

LF (Hexadecimal : 0x0A)

CR(Hexadecimal : 0x0D)

CR+LF (Hexadecimal : 0x0D 0x0A)

The terminator can be selected in the system configuration page, and the instrument defaults is LF.

Note:

Legal command string:

The AT381x allows the command sent by the host without the terminator, but it is recommended to add the terminator at the end of the command. Otherwise, it will cause a timeout wait after each command is received (the command timeout is 10ms~50ms depending on the baud rate).

10.3 Terminator

6

Host can send a string of command to instrument, instrument terminator will begin parsing after it captures end mark (LF, CR or LF+CR) or after input buffer overflows.

For example :

AAA:BBB CCC,DDD,EEE<LF> AAA:BBB CCC,DDD,EEE<CR> AAA:BBB CCC,DDD,EEE<LF+CR>

The AT381x terminator is responsible for parsing and performing all commands, before programming, users must know about parsing rules.

10.3.1 Terminator Rules

- 1. Terminator only parses and responds ASCII code's data.
- 2. Command string must be ended with terminator, terminator will begin performing command string only after it receives end mark or after buffer overflows.
- 3. If command handshake is turned on, every time terminator receives one string, it will promptly return this string to the host, only when host receives this returned string, can it continues sending the next string.
- 4. After terminator parses error, it will promptly stop parsing, and the current command is canceled.
- 5. When terminator parses the query command, it will terminate parsing this command string, the latter command string will be ignored.
- 6. When parsing command string, terminator is case insensitive.
- 7. Terminator supports command abbreviated form, please refer to the latter chapter regarding abbreviation norms.

10.3.2 Notation Conventions and Definitions

This chapter employs some marks, these marks are not a part of command tree; they are only for better understanding of command string.

< >	the character in <> means this command's parameter
[]	the character in [] means optional command
8	When there includes several parameter items in {}, means that users can only
	choose one item from it.
()	the abbreviated form of parameter is put in ()
Capital letter	Abbreviated form of command.

10.3.3 Command Structure

The SCPI commands are tree structured three levels deep. The highest level commands are called the subsystem

commands in this manual. So the lower level commands are legal only when the subsystem commands have been selected. A colon (:) is used to separate the higher level commands and the lower level commands. Figure 10-1 Command Tree Structure

Example ROOT:CCC:DDD ppp ROOT Subsystem Command CCC Level 2 DDD Level 3

ppp Parameter

10.4 Header and Parameters

A command tree consists of header and parameters, it uses a space (ASCII: 20H) to separate in the middle.

Example <u>AAA:BBB</u> 1.234 Header [Parameter]

10.4.1 Header

Headers can be of the long form or the short form. The long form allows easier understanding of the program code and the short form is suitable for writing.

10.4.2 Parameter

- Single command word, no parameter.
 Example: AAA:BBB
- Parameter can be character string form, the abbreviation rules are the same as the rules for command.

Example: AAA:BBB 1.23

- Parameter can be numeric form
 - <integer> integer 123, +123, -123
 - *<float>* floating number
 - 1. <Fixfloat> : fixed point floating number : 1.23, -1.23
 - 2. <Scifloat> : scientific notation floating number : 1.23E+4, +1.23e-4
 - 3. < Mpfloat>: multiplier expressed by floating number: 1.23k, 1.23M, 1.23G,1.23u

Table 10-1 Multiplier Mnemonics

Definition	Mnemonic
1E18 (EXA)	EX
1E15 (PETA)	PE
1E12 (TERA)	Т
1E9 (GIGA)	G
1E6 (MEGA)	MA
1E3 (KILO)	К
1E-3 (MILLI)	М
1E-6 (MICRO)	U
1E-9 (NANO)	Ν
1E-12 (PICO)	Р
1E-15 (PEMTO)	F
1E-18 (ATTO)	А

:

?

5

Multiplier is Case Insensitive, its writing style is different from standard name.

10.4.3 Separator

The AT381x terminator only accepts allowed separators, terminator will occur "Invalid separator (illegal separator)" error if beyond this separator, and these separators include:

Colon, used for separate command tree, or restart command tree.

Example: AAA : BBB : CCC 123.4 Question mark, used for query Example: AAA ? Space, used for separate parameter Example: AAA: BBB 1.234

10.4.4 **Error Code**

The AT381x temporarily stores the result of the processing of each received command in the buffer. Before the next command is sent, the status can be acquired by the ERR? Command. If the error code function is turned on in [SYSTEM CONFIG] page, the instrument will automatically return the processing result after processing the command.

Table 10-2

SCPI error cod	e									
Error code	Description	Explanation								
*E00	NO ERROR	No error								
*E01	BAD COMMAND	Command error								
*E02	PARAMETER ERROR	Parameter error								
*E03	MISSING PARAMETER	Missing parameters,								
		With parameter commands, no								
		parameters are provided								
*E04	INPUT BUFFER OVERRUN	Receive buffer overflow, the maximum								
		buffer of the AT381x is 1000 bytes								
*E05	SYNTAX ERROR	Syntactic error								
*E06	INVALID SEPARATOR	Invalid separator								

*E07	INVALID MULTIPLIER	Invalid multiplier									
*E08	BAD NUMERIC DATA	Value error									
*E09	VALUE TOO LONG	The value is too long, the numeric									
		parameter exceeds 20 bytes									
*E10	INVALID COMMAND	Invalid command, the command is invalid									
		under certain conditions									
*E11	UNKNOWN ERROR	Other unknown errors except the above									
		errors									

10.5 Command Reference

- DISPlay SUBSYSTEM
- FUNCtion SUBSYSTEM
- FREQuency SUBSYSTEM
- VOLTage SUBSYSTEM
- APERture SUBSYSTEM
- FETCh SUBSYSTEM
- COMParator SUBSYSTEM
- LIST SUBSYSTEM
- CORRection SUBSYSTEM
- TRIGger SUBSYSTEM
- BIAS SUBSYSTEM
- FILE SUBSYSTEM
- ERRor SUBSYSTEM
- Common commands
 *TRG
 *IDN?
 *SAV
 - *RCL

10.6 DISPlay Subsystem

The DISP Subsystem command group sets the display page.Figure 10-1DISP Command Tree

10.6.1 DISP:PAGE

The :PAGE command sets the display page.

The :PAGE? Query returns the abbreviated page name currently displayed on the LCD screen.

Command Syntax	DISP:PAGE <page name=""></page>	
Parameter	Where, <page name=""> is:</page>	
	MEASurement [or MEAS]	Sets display page to MEAS DISPLAY
	ENLARGE[or ENLA]	Sets display page to ENLARGE DISPLAY
	BINMEAS [or BINM]	Sets display page to BIN MEAS
	BINCOUNT [or BCO]	Sets display page to BIN COUNT
	LISTMEAS [or LIST]	Sets display page to LIST MEAS
	SETUP [or MSET]	Sets display page to MEAS SETUP
	CORRECTION [or CSET]	Sets display page to CORRECTION
	BINSETUP [or BSET]	Sets display page to BIN TABLE
	LISTSETUP [or LSET]	Sets display page to LIST TABLE
	CATalog [or CAT]	Sets display page to FILE
	SYSTem [or SYST]	Sets display page to SYSTEM CONFIG
	SYSTEMINFO [or SINF]	Sets display page to SYSTEM INFORMATION
Example	SEND> DISP:PAGE SYST	//Set to the SYSEMT CONFIG
Query Syntax	DISP:PAGE?	
Query Response	<page name=""></page>	
Example	SEND> DISP:PAGE? RET> SYST	

10.6.2 DISP:LINE

The :LINE command enters an arbitrary comment line of up to 30 ASCII characters in the comment field.

Command Syntax	DISP:LINE " <string>"</string>
Parameter	Where, <string> is ASCII character string (30 ASCII characters)</string>
Example	SEND> DISP:LINE "This is a comment."

10.7 FUNCtion Subsystem

The FUNCtion subsystem command group sets the measurement function, the measurement range, monitors parameter control.

Figure 10-2

10.7.1 FUNCtion

The FUNCtion command sets the measurement function.

Command Syntax	FUNC <function></function>
Parameter	<pre>Where, <function> is: Cs-Rs, Cs-D, Cp-Rp, Cp-D, Lp-Rp, Lp-Q, Ls-Rs, Ls-Q, Rs-Q, Rp-Q, R-X, DCR, Z-θr(or Z-thr)^{*1}, Z-θd(Z-thd) ^{*1} Z-D,Z-Q (*1: θ is ASCII Hex 0xE9)</function></pre>
Example	SEND> FUNC Cp-D //Set measurement function to Cp-D
Query Syntax	FUNC?
Query Response	<function></function>
Example	SEND> FUNC? RET> Cp-D

10.7.2 FUNCtion:IMPedance:AUTO

The FUNCtion:IMPedance:AUTO command sets the impedance's LCZ Automatic selection.

Command Syntax FUNC:IMPedance:AUTO {ON,OFF,0,1}

Example	SEND> FUNC: IMP: AUTO ON							
Query Syntax	FUNC: IMPedance: AUTO?							
Query Response	on,off}							
Example	SEND> FUNC:IMP:AUTO? RET> off							

10.7.3 FUNCtion:IMPedance:RANGe

The FUNCtion:IMPedance:RANGe command sets the impedance's measurement range.

Command Syntax	FUNC:IMPedance:RANGe <0-8,MIN,MAX>									
Parameter	Where, <0-8,MIN, MAX> is: 0-8, The range number MIN, =Range 0 MAX, =Range 8									
Example	SEND> FUNC:IMP:RANG 2 //Set measurement range to [2] $10k\Omega$									
Query Syntax	FUNC: IMPedance: RANGe?									
Query Response	<0-8>									
Example	SEND> FUNC:IMP:RANG? RET> 0									

10.7.4 FUNCtion:DCR:RANGe

The FUNCtion:DCR:RANGe command sets the DCR's measurement range.

Command Syntax	<pre>FUNC:DCR:RANGe <0-8,MIN,MAX></pre>									
Parameter	Where, <0-8,MIN, MAX> is: 0-8, The range number MIN, =Range 0 MAX, =Range 8									
Example	SEND> FUNC:DCR:RANG 2 //Set DCR range to [2] 10k $\!\Omega$									
Query Syntax	UNC:DCR:RANGe?									
Query Response	<0-8>									
Example	SEND> FUNC:DCR:RANG? RET> 0									

10.7.5 FUNCtion:RANGe:AUTO

The FUNCtion:RANGe:AUTO command sets the auto range to ON or OFF.

Command Syntax	<pre>FUNC:RANGe:AUTO {off(hold),on(auto),NOMinal}</pre>									
Parameter	There, {off(hold),on(auto),NOMinal} is: off(or hold): Sets the auto range to off. on(or auto): Sets the auto range to on. NOMinal: See Page 错误!未定义书签。 Section 错误!未找到引用源。 错误!未找到									
	引用源。									
Example	<pre>SEND> FUNC:RANG:AUTO AUTO //Sets to auto range. SEND> FUNC:RANG:AUTO off //Sets auto range to off.</pre>									
Query Syntax	FUNC:RANGe:AUTO?									
Query Response	{HOLD,AUTO,NOM}									
Example	SEND> FUNC:RANG:AUTO? RET> auto									

10.7.6 FUNCtion:MONitor1/2

The FUNCtion:MONitor1 and FUNCtion:MONitor2 commands set the two monitor parameter.

Command Syntax	FUNC:MO	Nitor1	. {off	, Z,	D,	Q, 1	THR,	THD,	R,	х,	G,	B, Y,	ABS	, PER	VAC,	IAC}
	FUNC:MO	Nitor2	{ { 011	;, Z,	. D,	Q, 1	ĽΗR,	THD,	к,	х,	G,	В, Ү,	ABS	, PER	VAC,	IAC }
Parameter	Where,	{off,	Z, D,	Q,	THR	, TH	ID, F	R, X,	G,	в,	Y,	ABS,	PER	VAC,	IAC}	
Example	SEND> FUNC:MON1 Z															
----------------	--															
Query Syntax	FUNC: MON1?															
	FONC.MONZ:															
Query Response	$\{ off, Z, D, Q, THR, THD, R, X, G, B, Y, ABS, PER VAC, IAC \}$															
Example	SEND> FUNC: MON1?															
	RET> off															

10.8 FREQuency Subsystem

The FREQuency command sets the oscillator frequency. The FREQuency? Query returns the current test frequency setting.

Figure 10-3

FREQ Subsystem Command Tree

FREQuence	[:CW]	

Command Syntax	<pre>FREQ[:CW] {<value>,MIN,MAX}</value></pre>		
Parameter	Where,		
	<value> is the numeric data (NR1 integer, NR2 fix float or NR3 floating point).</value>		
	MIN Sets to the minimum value		
	MAXSets to the maximum value		
Example	SEND> FREQ 1K //Set to 1kHz, the Hz cannot be added.		
Query Syntax	FREQ[:CW]?		
Query Response	<nr3></nr3>		
	NR3 floating point		
Example	SEND> FREQ?		
P.4	RET> 1.000000E+03		
Note	A suffix multiplier (k) can be used with this command. But the suffix unit Hz can't be		
	used.		
	This command CANNOT be used in LIST SWEEP DISPLAY page and CORRECTION page.		

10.9 LEVel Subsystem

The Level subsystem sets the oscillator's output voltage/current level and source output Impedance

Figure 10-4

10.9.1 LEVel:VOLTage (=VOLTage[:LEVel])

The LEVel:VOLTage or VOLTage[:LEVel] command sets the oscillator's output voltage level.

Command Syntax	LEVel:VOLTage { <value>,MIN,MAX}</value>		
- ,	or VOLTage:LEVel { <value>,MIN,MAX}</value>		
Parameter	Where,		
	<value> is the numeric data (NR1, NR2 or NR3).</value>		
	MIN Sets to the minimum value of voltage		
	MAXSets to the maximum value		
Example	SEND> LEV:VOLT 0.3 //Set to 0.3V,the unit V can be ignored.		
Query Syntax	LEVel:VOLTage?		
	or CURRent:LEVel?		
Ouery Response	<nr3></nr3>		
	NR3 floating point		
Example	SEND> VOLT?		
Pre	RET> 1.000000e+00		
Note	The suffix unit V can't be ignored		
	This command CANNOT be used in LIST MEAS page and CORRECTION page.		

10.9.2 LEVel:CURRent (=CURRent[:LEVel])

The LEVel:CURRent or CURRent[:LEVel] command sets the oscillator's output current level.

Command Syntax	LEVel:CURRent { <value>,MIN,MAX}</value>		
	or CURRent:LEVel { <value>,MIN,MAX}</value>		
Parameter	Where,		
	<value> is the numeric data (NR1, NR2 or NR3).</value>		
	MIN Sets to the minimum value of current		
	MAXSets to the maximum value of current		
Example	SEND> LEV:CURR 1m //Set to 1mA, unit V can be ignored.		
Ouerv Syntax	LEVel:CURRent?		
	or CURRent:LEVel?		
Query Response	<nr3></nr3>		
	NR3 floating point		
Example	SEND> VOLT?		
Example	RET> 1.000000e+00		
Note	The suffix unit V can't be ignored		
	This command CANNOT be used in LIST MEAS page and CORRECTION page.		

10.9.3 LEVel:SRESistance (= VOLTage:SRESistance)

The LEVel:SRESistance or VOLTage:SRESistance command sets the source output Impedance.

Command Syntax	LEVel:SRESistance {30,50,100}		
	VOLTage:SRESistance {30,50,100}		
Parameter	{30,50,100}		
	Where,		
	30 Sets the output impedance to 30Ω		
	50 Sets the output impedance to 50Ω		
	100 Sets the output impedance to 100Ω		
Example	SEND> LEV: SRES 30 //Set to 30Ω , the unit Ω cannot be added.		
Ouerv Svntax	VOLTage:SRES?		
2 , 3	or LEVel:SRES?		
Query Response	<nr1></nr1>		
· · ·	NR1 integer		
Example	SEND> LEV:SRES?		
Example	RET> 30		

Note	The suffix unit Ω can't be used with this command.
	This command CANNOT be used in LIST SWEEP DISPLAY page and CORRECTION page.

10.9.4 LEVel:ALC (=AMPlitude:ALC)

The LEVel:ALC or AMPlitude:ALC command enables the Automatic Level Control (ALC).

Command Syntax	LEVel:ALC {on,1,off,0}	
	AMPlitude:ALC {on,1,off,0}	
Parameter	{01,1,011,0}	
	Where,	
	On (1) Enable ALC	
	off(0) Turn off the ALC	
	off(0) Turn off the ALC.	
Evampla	SENDALE VIALC OD	
Example		
Quary Syntax	LEV:ALC?	
Query Syntax	OF AMPIALC?	
Ouery Response	{on,off}	
(,		
Example	SEND> LEV:ALC?	
	RET> off	
Nista	This second CANNOT he seed in LICE MEAS second CORRECTION second DCR	
Note	inis command CANNOT be used in LIST MEAS page, CORRECTION page and DCR	
	us a da	
	mode.	

10.10 APERture Subsystem

The **APERture** subsystem command sets the integration time of the ADC and the averaging rate.

Figure 10-5 APERture Subsystem Command Tree

Figure 10-5	Ar Ekture Subsystem Command Tree	
	APERture <i>{SLOW,MED,FAST}</i>	
	<a>veraging rate value:NR1>	
Command Synt	APERture {SLOW,MED,FAST} APERture <value> SPEED(spd) {SLOW,MED,FAST} SPEED(spd) <value></value></value>	
Paramet	er Where,	
	SLOW Set test speed to slow	
	MED Set test speed to medium	
	FAST Set test speed to fast	
	<value> NR1(0 to 256): Averaging rate (0=OFF=1)</value>	
Examp	le SEND> APER FAST SEND> APER 10	
Query Synt	APER?	
Query Respon	se {SLOW,MED,FAST}, <avg value=""></avg>	
Examp	le SEND> APER? RET> slow,0	

10.10.1 APERture:RATE?

The **APERture:RATE?** query returns the current integration time.

Query Syntax	APER:RATE?
Query Response	SLOW

Example SEND> APER:RATE? RET> slow			
Example RET> slow	Evampla	SEND>	APER:RATE?
	Example	RET>	slow

10.10.2 APERture:AVG?

The **APERture:AVG?** query returns the averaging rate settings.

Query Syntax	APER: AVG?
Query Response	<nr1></nr1>
	Integer (0 to 256)
Example	SEND> APER:AVG?
	RET> 0

10.11 FETCh Subsystem

The FETCh subsystem command group is a sensor-only command which retrieves the measurement data taken by measurement(s) initiated by a trigger, and places the data into the output buffer.

Figure 10-6

10.11.1 FETCh?

The FETCh? query sets the latest measurement data of the primary , secondary parameters and comparator result into the output buffer.

Query Syntax	FETCh?	
Query Response	<nr3:pr< th=""><th>imary value>,<nr3:secondary value="">,<comparator result=""></comparator></nr3:secondary></th></nr3:pr<>	imary value>, <nr3:secondary value="">,<comparator result=""></comparator></nr3:secondary>
Example	SEND> RET>	FETC? +2.617886e-11.+5.454426e-01.BIN1.AUX-OK.OK
	RET>	+1.23434e+05,0UT ,NG //DCR & Comp on

10.11.2 FETCh:IMPedance?

The FETCh:IMPedance? query sets the latest measurement data of the primary , secondary parameters monitor1 and monitor2 result into the output buffer.

Query Syntax	FETCh?	
Query Response	<nr3:pr< th=""><th>imary value>,<nr3:secondary value="">,<comparator result=""></comparator></nr3:secondary></th></nr3:pr<>	imary value>, <nr3:secondary value="">,<comparator result=""></comparator></nr3:secondary>
Example	SEND> RET>	FETC? +2.617886e-11,+5.454426e-01,BIN1,AUX-OK,OK
	RET>	+1.23434e+05,ВIN1,ОК //DCR & Comp on

10.11.3 FETCh:MAIN?

The FETCh:MAIN? query sets the latest measurement data of the primary and secondary parameters

Query Syntax	FETCh: N	FETCh:MAIN?	
Query Response	<nr3:pi< th=""><th colspan="2"><nr3:primary value="">,<nr3:secondary value=""></nr3:secondary></nr3:primary></th></nr3:pi<>	<nr3:primary value="">,<nr3:secondary value=""></nr3:secondary></nr3:primary>	
Example	SEND>	END> FETC:MAIN?	
•	RET>	+2.021009e-11,+1.644222e-01//LCR	
		Primary ,Secondary	
	RET>	+1.23434e+05//DCR	

10.11.4 FETCh:MONitor1? /2?

The FETCh:MONitor1? and FETCh:MONitor2 set the latest measurement data of the moniter1 and moniter2 parameters into the output buffer.

Query Syntax	FETCh:MONitor1? and FETCh:MONitor2?								
Query Response	<nr3: m<="" th=""><th colspan="3"><nr3: 2="" moniter1="" value=""></nr3:></th></nr3:>	<nr3: 2="" moniter1="" value=""></nr3:>							
Example	SEND>	FETC:MON1?							
•	RET>	+3.886517e+05							
	RET>	+0.000000e+00	//0:	The	monitor	1 is	S OFF		

10.11.5 FETCh:MONitor?

The FETCh:MONitor? set the latest measurement data of the moniter1 and moniter2 parameters into the output buffer.

Query Syntax	FETCh:MONitor?	
Query Response	<nr3: 2="" moniter1="" value=""></nr3:>	
Example	SEND> FETC:MON? RET> +3.886517e+05,+0.000000e+00 (0: The monitor 2 is OFF)	

10.12 COMParator Subsystem

The COMParator subsystem command group sets the comparator function, including its ON/OFF setting, limit mode, and limit values.

Figure 10-7 COMParator Subsystem Command Tree

10.12.1 COMParator:STATe

The COMParator:STATe command sets the comparator function to ON or OFF.

Command Syntax	COMParato	OMParator:STATe {ON,OFF,1,0}	
Parameter	Where,		
	ON or 1	Sets the comparator to ON	
	OFF or 0	Sets the comparator to OFF	
Example	SEND> COM	IP:STAT OFF	
Query Syntax	COMParato	pr:STATe?	
Query Response	$\{on, off\}$		
Example	SEND> C	COMP:STAT?	
•	RET> C	n	

10.12.2 COMParator:MODE

The :COMParator:MODE command sets the limit mode of the comparator function.

Command Syntax	COMParator:MODE {ABS,PER,SEQ}	
Parameter	Where,{ABS,PER,SEQ} is:	
	ABS Absolute tolerance mode	
	PER Percent tolerance mode	
	SEQ Sequential mode	
Example	SEND> COMP:MODE PER	
Query Syntax	COMParator:MODE?	
Query Response	{abs,per,seq}	
Example	SEND> COMP:MODE? RET> abs	

10.12.3 COMParator:AUX

The COMParator:AUX command sets the auxiliary BIN counting function of the comparator to ON or OFF.

Command Syntax	COMParator:AUX {ON,OFF,1,0}		
Parameter	Where,{ON,OFF,1,0} is:		
	ON or 1 Set the AUX BIN to ON		
	OFF or 0 Set the AUX BIN to OFF		
Example	SEND> COMP:AUX OFF		
Query Syntax	COMParator:AUX?		
Query Response	<pre>{on,off}</pre>		
Example	SEND> COMP:AUX?		
	RET> on		

10.12.4 COMParator:BINS

The COMParator: BINS command sets the total number of bins.

Command Syntax	COMParator:BINS <value></value>		
Parameter	Where,{value} is:		
	NR1 (1 to 9)		
Example	SEND> COMP:BINS 3		
Query Syntax	COMParator:BINS?		
Query Response	<nr1> (1 to 9)</nr1>		
Example	SEND> COMP:BINS? RET> 3		

10.12.5 COMParator:TOLerance:NOMinal

The COMParator:TOLerance:NOMinal command sets the nominal value for the tolerance mode of the comparator function.

Command Syntax	COMParator:TOLerance:NOMinal <value></value>		
Parameter	Where, <value> is:</value>		
	NR1, NR2 or NR3		
	A suffix multiplier can be used with this command. But the suffix unit $\mbox{F}/\Omega/\mbox{H}$ can't be		
	used.		
Example	SEND> COMP:TOL:NOM 100N SEND> COMP:TOL:NOM 1E-6		
Query Syntax	COMParator:TOLerance:NOMinal?		
Query Response	<nr3></nr3>		
Example	SEND> COMP:TOL:NOM?		
	RET> 1.000000e-06		

10.12.6 COMParator:TOLerance:BIN

The COMParator:TOLerance:BIN command sets the low/high limit values of each BIN for the comparator function tolerance mode.

Command Syntax	COMParator:TOLerance:BIN <n>,<low limit="">,<high limit=""></high></low></n>
Parameter	Where, <n>,<low limit="">,<high limit=""> is:</high></low></n>
	n NR1 (1 to 9): Bin number
	low limit NR1,NR2 or NR3: low limit value
	high limit NR1,NR2 or NR3: high limit value
Example	SEND> COMP:TOL:BIN 1,100P,200P
	SEND> COMP:TOL:BIN 2,200E-6,300E-6

Query Syntax	COMParator:TOLerance:BIN? <n></n>		
Parameter	here, <n> is:</n>		
	NR1 (1 to 9): Bin number		
Query Response	<nr3:low limit="">,<nr3:high limit=""></nr3:high></nr3:low>		
Fxample	SEND> COMP:TOL:BIN? 2		
Example	RET> 1.000000e-06,2.000000E-6		

10.12.7 COMParator:SLIM

The COMParator:SLIM or COMParator:secondary command sets the LOW/HIGH limit values for the secondary parameter.

Command Syntax	COMParator:SLIM <low value="">,<high value=""></high></low>
	COMParator:secondary <low value="">,<high value=""></high></low>
Parameter	Where, <low value="">,<high value=""> is:</high></low>
	<low value=""> NR1,NR2 or NR3: low limit value</low>
	<high value=""> NR1,NR2 or NR3: high limit value</high>
	A suffix multiplier can be used with this command.
Example	SEND> COMP:SLIM 0.0001,0.0010
Ouery Syntax	COMParator:SLIM?
	COMParator:secondary?
Query Response	<nr3:low limit="">,<nr3:high limit=""></nr3:high></nr3:low>
Example	SEND> COMP:SLIM?
	RET> 1.000000e-04,1.000000e-03

10.12.8 COMParator:BEEP

The :COMParator:BEEP command sets beep mode of the comparator function.

SEND> COMP:BEEP PASS	
COMParator: BEEP?	
{OFF, PASS, FAIL}	

10.12.9 COMParator:OPEN

The :COMParator:OPEN command selects the open condition for main parameter.

Command Syntax	COMParator:OPEN {OFF,2,5,10,20,50}
Parameter	Where,
	OFF Turns the beeper off.
	2,5,10,20,50 The percent range value
Example	SEND> COMP:OPEN 2
Query Syntax	COMParator: OPEN?
Query Response	{OFF,2,5,10,20,50}
Example	SEND> COMP:OPEN?
-	RET> OFF

10.13 LIST Subsystem

The LIST or SWEEP Subsystem command group sets the List Sweep measurement function, including the sweep point setting and limit values for the limit function.

LIST Subsystem Command Tree

10.13.1 LIST:PARAmeter

The LIST:PARAmeter command sets the list sweep parameter.

Command Syntax	LIST:PARAmeter	{FREQ,VOLT,CURR}	
Parameter	Where, {FREQ,LI	Where, {FREQ,LEVEL} is:	
	FREQ	Sets the sweep parameter to frequency	
	VOLT	Sets the sweep parameter to voltage level	
	CURR	Sets the sweep parameter to current level	
Example	SEND> LIST:PARA	A VOLT	
Query Syntax	LIST:PARAmeter?		
Query Response	{freq,volt,curi	۶}	
Example	SEND> LIST:PA	RA?	
	RET> FREQ		

10.13.2 LIST:STAT

The LIST:STAT command turns on/off the specified sweep point.

Command Syntax	LIST:STAT <n>,{ON,OFF,1,0}</n>	
Parameter	Where, <n> is:</n>	
	n NR1(1 to 10): List sweep point	
	ON or 1 Set this point to ON	
	OFF or 0 Set this point to OFF	
Example	SEND> LIST:STAT 1,ON	
Query Syntax	LIST:STAT? <n></n>	
Parameter	Where, <n> is:</n>	
	n NR1(1 to 10): List sweep point	
Query Response	{on,off}	
Example	SEND> LIST:STAT? 1 RET> on	

10.13.3 LIST:BAND

The LIST:BAND command sets the List Sweep point value, limit mode and low/high limit values.

Command Syntax	LIST:BAND <n>,</n>	LIST:BAND <n>,<point value="">,{A,B,OFF},<low>,<high></high></low></point></n>		
Parameter	Where, <n>,<point value="">,{A,B,OFF},<low>,<high> is:</high></low></point></n>			
	n	NR1(1 to 10): List sweep point		
	<point value=""></point>	sweep point value (frequency value or signal level voltage value)		
	А,	Uses the primary parameter as the limit parameter.		
	В,	Uses the secondary parameter as the limit parameter.		
	OFF	Turn off the List Sweep's comparator function		
	<low></low>	NR1,NR2 or NR3: low limit value		
	<high></high>	NR1,NR2 or NR3: high limit value		
	Note: The suffix m	ultipliers can be used with this command. But the suffix units CANNOT		
	be added.			
Example	SEND> LIST:BAN SEND> LIST:BAN	D 1,1k,A,1n,2n D 2,10k,A,1E-9,2E-9		
Query Syntax	LIST:BAND? <n></n>			
Parameter	Where, <n> is:</n>			
	n NR	1(1 to 10): List sweep point		
Query Response	{on,off}, <poin< th=""><th>t value>,{A,B,-},<nr3:low>,<nr4:high></nr4:high></nr3:low></th></poin<>	t value>,{A,B,-}, <nr3:low>,<nr4:high></nr4:high></nr3:low>		
Example	SEND> LIST:BA RET> on,1.00	AND? 1 0000e+03,A,1.000000E-9,2.000000E-9		

10.14 CORRection Subsystem

The CORRection subsystem command group sets the correction function, including the OPEN, SHORT and LOAD correction settings.

NOTE: The CORRection subsystem CANNOT work in <LIST MEAS> page.

Figure 10-9 CORRection Subsystem Command Tree

10.14.1 CORRection:OPEN

The CORRection:OPEN command execute all presetted OPEN correction data measurement points.

Command Syntax	CORRection: OPEN
Example	SEND> CORRection:OPEN

10.14.1.1 CORRection:OPEN:STATe

The CORRection: OPEN: STATe command sets the OPEN correction function to ON or OFF.

Command Syntax	CORRection:OPEN:STATe {ON,OFF,1,0}	
Parameter	Where, {ON,OFF,1,0} is:	
	ON, 1 When the function is ON	
	OFF,0 When the function is OFF	
Example	SEND> CORR:OPEN:STATE ON	
	RET> open	
Query Syntax	CORRection: OPEN: STATe?	
Query Response	{on,off}	
Example	SEND> CORR:OPEN:STATe?	
	RET> on	

10.14.2 CORRection:SHORt

The CORRection:SHORt command execute all presetted SHORT correction data measurement

points.

Command Syntax	CORRection: SHORt	
Example	SEND> RET>	CORRection:SHOR short

10.14.2.1 CORRection:SHORt:STATe

The CORRection:SHORt:STATe command sets the SHORT correction function to ON or OFF.

Command Syntax	CORRection:SHORt:STATe {ON,OFF,1,0}	
Parameter	Where, {ON,OFF,1,0} is:	
	ON, 1 When the function is ON	
	OFF,0 When the function is OFF	
Example	SEND> CORR:SHOR:STATE ON	
Query Syntax	CORRection: SHOR: STATe?	
Query Response	<pre>{on,off}</pre>	
Example	SEND> CORR:SHOR:STATe?	
	RET> on	

10.14.3 CORRection:SPOT:FREQuency

The CORRection:SPOT:FREQuency command sets the frequency point for the specified frequency point correction.

Command Syntax	CORRection:SPOT:FREQuendy <value></value>
Parameter	Where, <value> is: value NR1,NR2 or NR3:Frequecny value. A suffix multiplier can be used with this command. But the unit "Hz" cannot be added.</value>
Example	SEND> CORR:SPOT:FREQ 1k SEND> CORR:SPOT:FREQ 10k
Query Syntax	CORRection:SPOT:FREQuency?
Query Response	<nr3></nr3>
Example	SEND> CORR:SPOT:FREQ? RET> 1.000000e+03

10.14.4 CORRection:SPOT:OPEN

This command executes the OPEN correction data measure for the specified frequency correction.

Command Syntax	CORRection:SPOT:OPEN
Example	SEND> CORR:SPOT:OPEN

10.14.5 CORRection:SPOT:SHORt

This command executes the SHORT correction data measure for the specified frequency correction.

Command Syntax	CORRection:SPOT:SHORt
Example	SEND> CORR:SPOT:SHOR

10.15 TRIGger Subsystem

The TRIGger subsystem command group is used to enable a measurement or a sweep measurement, and to set the trigger mode.

Figure 10-10

10.15.1 TRIGger[:IMMediate]

The TRIGger:IMMediate command causes the trigger to execute a measurement or a sweep measurement, regardless of the trigger state.

Command Syntax	TRIGger[:IMMediate]		
Example	SEND> TRIG		
Note	This command can be ONLY used in BUS trigger mode.		

10.15.2 TRIGger:SOURce

The TRIGger:SOURce command sets the trigger mode.

Command Syntax	TRIGger	<pre>IRIGger:SOURce {INT,MAN,EXT,BUS}</pre>	
Parameter	Where, {	INT,MAN,EXT,BUS} is	
	INT	Internal Trigger Mode	
	MAN	Manual Trigger Mode	
	EXT	External Trigger Mode	
	BUS	BUS Trigger Mode	
Example	SEND> 1	RIG:SOUR BUS	
Query Syntax	TRIGger	::SOURce?	
Query Response	{INT,MAN,EXT,BUS}		
Example	SEND>	TRIG:SOUR?	
	RET>	INT	

10.15.3 TRIGger:DELAY

The TRIGger:DELAY command sets the trigger delay time.

Command Syntax	TRIGger:DELAY { <float>,min,max} TRIGger:DLY {<float>,min,max}</float></float>		
Parameter	Where, is		
	float value: from 1ms to 60.00s		
	min: =0ms		
	max: =60.000s		
Example	SEND> TRIG:DLY 1 //1.000s		
Query Syntax	TRIGger:DELAY?		

	TRIGger:DLY?	
Query Response	{0.000s~60.00s}	
Example	SEND> TRIG:DLY? RET> 1.000s	

10.16 BIAS Subsystem

The BIAS subsystem command group sets the DC BIAS switch to ON or OFF, and sets the DC bias voltage value.

Figure 10-11

BIAS Subsystem Command Tree

Command Syntax	BIAS {OFF,<-2.5 to +2.5V,min,max}	
Example	SEND> BIAS OFF SEND> BIAS 2	
Query Syntax	BIAS?	
Query Response	<-2.50V~+2.50V>	
Example	SEND> BIAS? RET> OFF	

10.17 FILE Subsystem

The FILE subsystem command group executes the file operation.

Figure 10-12

FILE Subsystem Command Tree

10.17.1 FILE?

The FILE? query returns the file number used by system.

Query Syntax	FILE?	
Query Response	<nr1(0< th=""><th>TO 9):File number></th></nr1(0<>	TO 9):File number>
Fxample	SEND>	FILE?
Example	RET>	0

10.17.2 FILE:SAVE

The FILE:SAVE command saves all user settings into current used file.

Command Syntax	FILE:SAVE
Example	SEND> FILE:SAVE

The FILE:SAVE <n> command saves all user settings into specified file.

Command Syntax	FILE:SAVE <file no.=""></file>
Parameter	Where, <file no.=""> is:</file>
	NR1 (0 to 9)
Example	SEND> FILE:SAVE 0

10.17.3 FILE:LOAD

The FILE:LOAD command recalls all user settings from current used file.

Command Syntax	FILE:LOAD
Example	SEND> FILE:LOAD

The FILE:LOAD <n> command recalls all user settings from specified file.

Command Syntax	FILE:LOAD <file no.=""></file>	
Parameter	Where, <file no.=""> is:</file>	
	NR1 (0 to 9)	
Example	SEND> FILE:LOAD 0	

10.17.4 FILE:DELete

Command Syntax	<pre>FILE:DELete <file no.=""></file></pre>
Parameter	Where, <file no.=""> is:</file>
	NR1 (0 to 9)
Example	SEND> FILE:DELete

10.18 ERRor Subsystem

10.18.1 ERRor?

The ERRor? retrieves last error information.

Query Syntax	ERRor?
Query Response	Error string
Example	SEND> ERR?
	RET> no error.

10.19 SYSTEM Subsystem

10.19.1 SYSTem:SHAKehand

The SYSTem:SHAKehand command feeds back the sent commands.

Command Syntax	SYSTem:SHAKehand {on,off}		
Example	SEND> SYST:SHAK ON		
Query Syntax	SYSTem:SHAKehand?		
Query Response	{on,off}		
Example	SEND> SYST:SHAK?		
P.4	RET> OFF		

10.19.2 SYSTem:CODE

The SYSTem:CODE command feeds back error code for each sent command.

Command Syntax	SYSTem:CODE {on,off}	
-----------------------	----------------------	--

Example	SEND> SYST:CODE ON
Query Syntax	SYSTem:CODE?
Query Response	<pre>{on,off}</pre>
Example	SEND> SYST:CODE? RET> OFF

10.19.3 SYSTem:KEYLock

SYSTem:KEYLock command unlocks the keypad.	
Command Syntax	SYST:KEYLOCK OFF or UNLOCK(UNLK)
Example	SEND> UNLOCK

10.19.4 SYSTem:RESult

SYSTem:RESult command selects the test results send mode.

Command Syntax	SYSTem:RESult {fetch,auto}	
Example	SEND> SYST:RES fetch	
Parameter	Where,	
	fetch The test results will be sent back by command "fetch?"	
	auto The results will be sent back by one trig.	
Query Syntax	SYSTem:RESult?	
Query Response	{FETCH,AUTO}	
Example	SEND> SYST:RES?	
_	RET> fetch	

Common Commands 10.20

10.20.1 *IDN?

The *IDN? query returns the instrument ID.

Query Syntax	IDN? Or *IDN?
Query Response	<manufacturer>,<model>,<serial no.="">,<fireware></fireware></serial></model></manufacturer>

10.20.2 ***TRG**

The *TRG command (trigger command) performs the same function as the Group Execute Trigger command.

Command Syntax	*TRG	
Query Response	<primary value="">,<secondary value="">,<comparator result=""></comparator></secondary></primary>	
Example	SEND> *TRG RET> +5.566785e-11,+7.253470e-01,OUT	
Note	This command can be used in BUS trigger mode.	
	*TRG = TRIG;:FETC?	

10.20.3 *SAV

*SAV = FILE:SAVE

The *SAV command saves all user settings into current used file.

Command Syntax	*SAV
Example	SEND> *SAV

*RCL = FILE:LOAD	
The *RCL	command recalls all user settings from current used file.
Command Syntax *RCI	
Example SENT	> *RCL

11. Modbus (RTU) Protocol

This chapter include the following information:

- Data format About the Modbus communication format.
- Function
- Variable Area
- Function Code

11.1 Data Format

We follow the Modbus (RTU) communication protocol, the instrument will respond to commands of the host computer and return the standard response frame.

Reference:

You can contact our sales department to get the communication test tool, which has Modbus communication debugging method. It contains CRC-16 calculator and floating point numbers into Modbus floating point format.

11.1.1 Command Frame

Figure 11-1 Modbus Command Frame

Station address Function	n code	Data	CRC-16	
		I		
1 1			2 Byte	

Table 11-1

CRC–16 Calculation range

Command Frame	Description
	At least 3.5 character time squelch interval is requested
Station address	1 byte
	Modbus can support 00~0x63 stations
	Designated as 00 when unified broadcast
	In instruments that do not have an optional RS485, the default
	station address is 0x01
Function code	1 byte
	0x03: Read multiple registers
	0x04: =03H, not used
	0x06: Write to a single register, can use 10H instead
	0x08: Echo test (used only for debugging)
	0x10: Write to multiple registers
Data	Specify register address, quantity, and content
CRC-16	2 bytes, low in front
	Cyclic Redundancy Check
	Calculate all data from the station address to the end of the data to

get the CRC16 check code
At least 3.5 character time squelch interval is requested

11.1.2 CRC-16 Calculation Method

- 1. Set the initial value of the CRC-16 register to 0xFFFF.
- 2. Perform XOR calculation fo CRC-16 register and information of the first byte, then it return the result to the CRC register.
- 3. Fill in the MSB with 0 and use the CRC register to shift to the right by one bit.
- 4. If the bit moved from the LSB is "0", repeat step (3) (process the next shift). If the bit moved from the LSB is "1", will perform XOR calculation for the CRC register and 0xA001, then the result is returned to the CRC register.
- 5. Repeat steps (3) and (4) until you move 8 bits.
- 6. If the information processing has not been completed, perform XOR calculation for CRC register and information of the next Byte, and return to the CRC register, repeating from step (3).
- 7. Append the result of the calculation (the value of the CRC register) from the low byte to the message.

The following is a CRC calculation function for a VB language.

```
Function CRC16(data() As Byte) As Byte()
   Dim CRC16Lo As Byte, CRC16Hi As Byte
                                            'CRC register
   Dim CL As Byte, CH As Byte
                                      ' Polynomial code &HA001
   Dim SaveHi As Byte, SaveLo As Byte
   Dim i As Integer
   Dim flag As Integer
   CRC16Lo = \&HFF
   CRC16Hi = &HFF
   CL = \&H1
   CH = \&HA0
   For i = 0 To UBound(data)
       CRC16Lo = CRC16Lo Xor data(i) 'Each data is XORed with the CRC register
       For flag = 0 To 7
          SaveHi = CRC16Hi
          SaveLo = CRC16Lo
          CRC16Hi = CRC16Hi \ 2
                                      'High bit right shift one bit
          CRC16Lo = CRC16Lo \setminus 2
                                    'Low bit right shift one bit
          If ((SaveHi And &H1) = &H1) Then ' If the last bit of the high byte
is 1
                                         'Then the low byte is shifted to the
              CRC16Lo = CRC16Lo Or &H80
right and then supplement 1 at front
          End If
                             'Otherwise automatically fill 0
          If ((SaveLo And &H1) = &H1) Then ' If the LSB is 1, then XOR with
the polynomial code
              CRC16Hi = CRC16Hi Xor CH
              CRC16Lo = CRC16Lo Xor CL
          End If
      Next flag
   Next i
   Dim ReturnData(1) As Byte
   ReturnData(0) = CRC16Hi
                                 'CRC high bit
                                 'CRC low bit
   ReturnData(1) = CRC16Lo
   CRC16 = ReturnData
   End Function
 My company's "Communication Test Tool", which has Modbus communication debugging method. It
 contains the CRC-16 calculator.
Calculate the CRC-16 data to be appended to the end of the command frame, for example:
1234H:
```

Figure 11-2 Modbus append CRC-16 value

Reference:

	Station address Func	ion code	Data	CRC-16		
				Low He	eigh	
		1		H 34 H	12	
		CRC-16 Calo	ulation range			
11 1 3						
11.1.5	Response Fra	ne				
	Unless it is a com	mand broadcast b	y 00H station address,	the other statio	n address will return	
	a response frame	by the AT381x.				
Fiture 11-3	Normal response	frame				
11010 11 5	Station addres∉ur	ction code	Data		CRC-16	
			Í	I		
	1	1			2 Byte	
		CRC-	16 Calculation range			
Figure 11-4	Abnormal respon	se frame				
	Station address Fu	ction code Error code	CRC-16			
	1	1 1	2 Byte			
	CRC-	16 Calculation rang	e			
Table 11-2	Description for a	bnormal response f	rame			
	Station address	1 byte				
	From et i e ma e e e e e	Returned from	i station address as it is	S		
	Function code	1 byte	1 byte			
		(0x80) for eva	$(0x80)$ for example: $0x02 \circ P \circ 0x82$			
	Frror code	Exception cod	Exception code:			
		0x01 function	0x01 function code error (function code is not supported)			
		0x02 register	error (register does not	t exist)		
		0x03 data erro	or	·		
		0x04 executio	0x04 execution error			
	CRC-16	2 bytes, low in	2 bytes, low in front			
		Cyclic Redund	Cyclic Redundancy Check			
		Calculate all d	ata from the station ac	dress to the er	nd of the data to	
		get the CRC16	check code			

11.1.4 No Response

In the following cases, the instrument will not perform any processing and will not respond, resulting in communication timeout.

- 1. Station address error
- 2. Transmission error
- 3. CRC-16 error
- 4. The number of digits is incorrect. For example, the function code 0x03 must have a total

digit of 8, and the received digits are less than 8 or greater than 8 bytes. 5. When the station address is 0x00, it represents the broadcast address, the AT381x does not respond.

Error Code 11.1.5

Table 11-3

Description for Error Code

Error code	Name	Description	priority
0x01	Function code error	Function code does not exist	1
0x02	Register error	Register code does not exist	2
0x03	Data error	The number of registers or the	3
		number of bytes is incorrect	
0x04	Execution error	The data is illegal, and the written	4
		data is not allowed.	

11.2 **Function Code**

Function code

The instrument only supports the following function codes, other function codes will respond to the error frame.

Table 11-4

Function code	Name	Description
0x03	Read multiple registers	Read multiple consecutive register data
0x04	Same as 0x03	Please use 0x03 instead
0x08	Echo test	The received data is returned as it was.
0x10	Write to multiple registers	Write to multiple consecutive registers

Register 11.3

 \odot

The number of registers in the instrument is 2-byte mode, that is, 2 bytes must be written each time. For example, the speed register is 0x3002, the data is 2 bytes, and the value must be written to 0x0001.

Data :

The instrument supports the following values:

- 1. 1 register, double-byte (16-bit) integer, for example: $0x64 \rightarrow 00.64$
- 2. 2 registers, four-byte (32-bit) integer, for example: $0x12345678 \rightarrow 12345678$

3. 2 registers, 4 bytes (32 bits) single precision floating point number, $3.14 \rightarrow 40.48$ F5 C3

My company's "Communication Test Tool", which has Modbus communication debugging method. It contains floating-point converter..

Reference:

Read Multiple Registers 11.4

Figure 11-5 Read Multiple Registers (0x03)

				CBC-16
Station address	Function code	Starting address	Number of elements	
	H'03	I		
1	1	2	2	2 Byte

The function code for reading multiple registers is 0x03.

Table 11-5

Read Multipl	Read Multiple Registers				
Name	Name	Description			
	Station address	When there is no RS485 address specified, the			
		default is 01.			
0x03	Function code				
	Starting address	Register start address, please refer to the Modbus			
		command set			
	Number of read	The number of registers read continuously. Please			
	registers	refer to the Modbus command set to ensure that			
	0001~006A (106)	these register addresses arevalid, otherwise an error			
		frame will be returned.			
CRC-16	Check code				

Figure 11-6Read Multiple Registers (0x03)Response Frame

				CDC 16
Station address	byte count	byte count	Read data (Element count)	CHC-16
	H'03			1
1	1	1	0 ~ 212(2X106)	2

Name	Name	Description
	Station address	Returned as it was.
0x03	Function code	No abnormality: 0x03
Or 0x83		Error code: 0x83
	Number of bytes	= number of registers x 2
		For example: 1 register returns 02
	Data	Data Read
CRC-16	Check code	

11.5 Writing to Multiple Registers

Figure 11-7 Writing to multiple registers (0x10)

Station addres	s€unctio	n code Starting a	ddress	Number of elements	Byte count	Write data (Element count)	CRC-16
	H'10					I	
Table 11-6 Writing to r			ultiple	2 registers	1	0 ~ 208(2X104)	2
Nam		Name	Name	ê	Description	า	
			Static	on address	When the	re is no RS485 address	s specified, the
					default is 0)1.	
		0x10	Funct	ion code			
			Starti	ng address	Register st	art address, please refer	to the Modbus

		command set
	Number of write	The number of registers read continuously. Please
	registers	refer to the Modbus command set to ensure that
	0001~0068 (104)	these register addresses arevalid, otherwise an error
		frame will be returned.
	Number of bytes	= number of registers x 2
CRC-16	Data	

Figure 11-8

Write to Multiple Registers (0x03) Response Frame

				CRC-16
Station add	essFunction cod	le Starting address	Number of elements	
	H'10			
1	1	2	2	2 Byte

Name	Name	Description
	Station address	Returned as it was.
0x10	Function code	No abnormality: 0x10
Or 0x90		Error code: 0x90
	Starting address	
	Number of write	
	registers	
	0001~0068 (104)	
	CRC-16 Check code	

11.6 Echo Test

echo test function code 0x08, used for debug Modbus.

Figure 11-9

echo test (0x08) Instruction frame

Station addressFunction code		e Fixed value	Test data	CRC-16			
	H'08	H'00 H'00					
1	1 1 2		2	2 Byte			
Response frame							
Station addressFunction code		e Fixed value	Test data	CRC-16			
	H'08	H'00 H'00		Ī			
1	1	2	2	2 Byte			

Name	Name	Description
	Station address	Returned as it was.
0x08	Function code	
	Fixed value	00 00

Test data	Any value: for example 12 34
CRC-16 Check code	

Example :

Assume that the test data is 0x1234 :

Command:	01	08	00 00	12 34	ED 7C(CRC-16)
Response:	01	08	00 00	12 34	ED 7C(CRC-16)

12. Modbus (RTU) Command

Register Overview 12.1

The following is a list of all register addresses used by the AT381x. Any address not in the table will return error code 0x02.

Table 12-1	Register Overview		
Register	Name	Value	Description
address			
2000-2001	Read the primary parameter	4-byte floating point	Read-only register, data occupies
	measurement result	number	2 registers
2002-2003	Read the secondary parameter	4-byte floating point	Read-only register, data occupies
	measurement result	number	2 registers
2004	Get the comparator result	2 Byte integer	Read-only register, data occupies
			1 register
0000	Read instrument version number	4 Byte ASCII	Read-only register, data occupies
			2 registers
3000	Function register	Data function	Read and write registers, 2-byte
		0000 Cs-Rs	integer
		0001 Cs-D	
		0002 Cp-Rp	
		0003 Cp-D	
		0004 Lp-Rp	
		0005 Lp-Q	
		0006 Ls-Rs	
		0007 Ls-Q	

		0008 Rs-Q	
		0009 Rp-Q	
		000A R-X	
		000B DCR	
		000C Z-r	
		000D Z-d	
		000E Z-D	
		000F Z-Q	
3001	LCR range No.	0000~0008	Read and write registers, 2-byte
			integer
3002	Bange mode	0000 · Manual	Read and write registers 2-byte
5002	Kange mode		integer
			lineger
2002	Tast speed		Read and write registers 2 bute
3003	lest speed		Read and write registers, 2-byte
			Integer
		0002 : Medium2	
		0003 : Fast	
3004	Average number of times	0000 : Invalid	Read and write registers, 2-byte
		0001~0x0100	integer
		(1~256)	
3005	Trigger mode	0000 : Internal	Read and write registers, 2-byte
		0001 : Manual	integer
		0002 : External	
		0003 : Remote	
3006-3007	Test frequency	4-byte floating point	Read and write registers, data
		number	occupies 2 registers
3008-3009	Test level	4-byte floating point	Read and write registers, data
		number	occupies 2 registers
300A	DCR range No.	0000~0008	Read and write registers, 2-byte
	5		integer
3000	Recall at startun	0000 · File 0	Read and write registers 2-byte
5000		0001 : Current file	integer
2000			Bood and write registers 2 bute
3000	Auto save		integer
2005	Curtana lan avez a c	0001 . Allow	Regel and write registers 2 bute
300E	System language		Read and write registers, 2-byte
		0001 : Chinese	Integer
2010 2011	Test summer t	A lasta flasti	Dead and write marks to the
3010-3011	lest current	4-byte floating point	Read and write registers, data
		number	occupies 2 registers
3012-3013	DC bias	4-byte floating point	Read and write registers, data
		number	occupies 2 registers
3100	Comparator status	0000 : Comparator off	Read and write registers, 2-byte
		0001 : Comparator on	integer

Modbus (RTU) Command

3101	Comparator mode	0000 : ABS	Read and write registers, 2-byte
		0001 : PER	integer
		0002 : SEQ	
3102	Secondary parameter comparison	0000: Secondary	Read and write registers, 2-byte
	on/off	parameter comparison	integer
		off	
		0001 : Secondary	
		parameter comparison	
		on	
3103	Bin count	0001~0009	Read and write registers, 2-byte
		Bin count 1~9bin	integer
3104	Веер	0000 : off	Read and write registers, 2-byte
		0001 : GD beep	integer
		0002 : NG beep	
310A	Primary parameter nominal value	4-byte floating point	Read and write registers, data
		number	occupies 2 registers
310C	Secondary parameter lower limit	4-byte floating point	Read and write registers, data
	value	number	occupies 2 registers
310E	Secondary parameter higher limit	4-byte floating point	Read and write registers, data
	value	number	occupies 2 registers
3110	Primary parameter BIN1 lower	4-byte floating point	Read and write registers, data
	limit value	number	occupies 2 registers
3112	Primary parameter BIN1 higher	4-byte floating point	Read and write registers, data
		number	occupies 2 registers
3114	Primary parameter BIN2 lower	4-byte floating point	Read and write registers, data
2110	Ilmit value	number	occupies 2 registers
3116	Primary parameter BIN2 higher	4-byte floating point	Read and write registers, data
2110	Ilmit value	number	Occupies 2 registers
5118	limit value	a-byte noating point	Read and write registers, data
211.4	Drimany parameter PIN2 higher	A byte fleating point	Pood and write registers data
JIIA	limit value	number	occupies 2 registers
3110	Primary parameter BINA lower	A-byte floating point	Read and write registers data
5110	limit value	number	occupies 2 registers
311F	Primary parameter BIN4 higher	4-byte floating point	Read and write registers data
0111	limit value	number	occupies 2 registers
3120	Primary parameter BIN5 lower	4-byte floating point	Read and write registers data
0120	limit value	number	occupies 2 registers
3122	Primary parameter BIN5 higher	4-byte floating point	Read and write registers data
	limit value	number	occupies 2 registers
3124	Primary parameter BIN6 lower	4-byte floating point	Read and write registers data
	limit value	number	occupies 2 registers
3126	Primary parameter BIN6 higher	4-byte floating point	Read and write registers data
•	limit value	number	occupies 2 registers
L		L	1

3128	Primary parameter BIN7 lower	4-byte floating point	Read and write registers, data
	limit value	number	occupies 2 registers
312A	Primary parameter BIN7 higher	4-byte floating point	Read and write registers, data
	limit value	number	occupies 2 registers
312C	Primary parameter BIN8 lower	4-byte floating point	Read and write registers, data
	limit value	number	occupies 2 registers
312E	Primary parameter BIN8 higher	4-byte floating point	Read and write registers, data
	limit value	number	occupies 2 registers
3130	Primary parameter BIN9 lower	4-byte floating point	Read and write registers, data
	limit value	number	occupies 2 registers
3132	Primary parameter BIN9 higher	4-byte floating point	Read and write registers, data
	limit value	number	occupies 2 registers
4000	Save settings to current file	Fixed value : 0001	Write-only register, data 2 bytes
4008	Read current file data	Fixed value : 0001	Write-only register, data 2 bytes
4010	Save settings to the specified file	0000~0009	Write-only register, data 2 bytes
4018	Read specified file data	0000~0009	Write-only register, data 2 bytes
5000	Open circuit full frequency clear	Write a fixed value : 0001	Read and write registers, data
	register	Read :	occupies 1 register
	Read correction status	0001 in correcting	Once the correction function is
		0000 correction success	executed, Modbus will disable the
		FFFF correction fail	execution of the write command
			and only allow the register to be
			read.
5008	Short circuit full frequency clear	Write a fixed value : 0001	Read and write registers, data
	register	Read :	occupies 1 register
	Read correction status	0001 in correcting	Once the correction function is
		0000 correction success	executed, Modbus will disable the
		FFFF correction fail	execution of the write command
			and only allow the register to be
5010		F	read.
5010	Point frequency I setting	Frequency value	Read and write registers, data
		Point frequency off	occupies 2 registers
		4 byte fleating point	
		number	
5012	Point frequency 2 setting	Frequency value	Read and write registers data
5012	For the duency 2 setting	Floating point number 0 :	occupies 2 registers
		Point frequency off	
		4-byte floating point	
		number	
5014	Point frequency 3 setting	Frequency value	Read and write registers data
5017		Floating point number 0 ·	occupies 2 registers
		oint frequency off	

		4-byte floating point	
		number	
5020	Point frequency open circuit	0001 : Point frequency 1	Read and write registers, data
	correction	0002 : Point frequency 2	occupies 1 register
		0003 : Point frequency 3	
		Read :	
		0000 correction success	
		FFFF correction fail	
5028	Point frequency short circuit	0001 : Point frequency 1	Read and write registers, data
	correction	0002 : Point frequency 2	occupies 1 register
		0003 : Point frequency 3	
		Read :	
		0000 correction success	
		FFFF correction fail	

12.2 Fetch Measurement Data

12.2.1 Fetch measurement data [2000H-2003H]

Register 2000~2003 is used for fetching measurement data of the AT381x Command :

1	2	3	4	5	6	7	8
01	03	2000		0002		CRC-16	
passive station	read	register		number of registers		check code	
				- 3 -			

Response

1	2	3	4	5	6	7	8	9
01	03	byte	single	precisior	CRO	C-16		
				num				

• Obtain the primary parameter measurement result :

Send:

1	2	3	4	5	6	7	8
01	03	20	00	00	02	CF	СВ
passive	read	register		number of		check c	ode
station		-		regist	ters		

Response:

1	2	3	4	5	6	7	8	9
01	03	04	4E	6E	6B	28	A3	E8
01	03	byte	single	e precisior	CRC-	16		
				num				

Among them, B4~B6 is measurement data : 4E6E6B28 stands for 1E9 (Low position in front)

• Fetch the secondary parameter measurement result :

Send:

1	2	3	4	5	6	7	8	
01	03	20	02	00	02	6E	0B	
passive	read	register		number of		check code		
station				regist	ters			

Response:

1	2	3	4	5	6	7	8	9
01	03	04	50	15	02	F9	3B	D5
01	03	byte	single	e precisior	CRC-	16		
				num	nber			

Among them, B4~B6 is measurement data : 501502F9 stands for 1E10 (Low position in front)

12.2.2 Fetch Comparator Results [2004H]

Register 2004 records voltage and resistance comparator results 16-bit storage domain:

Among them :

BIT8	secondary parameter bin	1 : NG
BIT7	total GD bin	1 : primary and secondary parameter GD ,
		0 : Total NG
BIT3~BIT0	GD bin	1~9 : GD 0 : NG

Send:

1	2	3	4	5	6	7	8
01	03	20	04	00	01	CE	0B
passive	read	regis	ter	numbe	er of	check c	ode
station				regist	ters		

Response:

1	2	3	4	5	6	7
01	03	02	00	01	EO	E5

Example :

Data 01 81	
BIT8:	1=secondary parameter NG
BIT7:	1= Total NG
BIT3-BITO:	1=primary parameter GD bin BIN1
Data 00 01	
BIT8 :	0=secondary parameter GD
BIT7:	0=Total GD
BIT3-BITO :	1= primary parameter GD bin BIN1

Fetch primary and secondary measurement values and comparator results [2000~2004] Send:

1	2	3	4	5	6	7	8
01	03	20	00	00	05	8E	09
passive station	read	regis	ter	numbe regist	er of ters	check c	ode

Response:

01 03 0A 44 79 D4 B1 37 D6 9D C2 00 81 C6 24

12.3 Parameter Setting

12.3.1 Function Register [3000H]

• Wi	rite									
1	2	3	4	5	6	7	8	9	10	11
01	10	30	00	00	01	02	00	00	96	53
	write	regis	ter	number of		byte	data		CRC	
				regist	registers					

Response:

1	2	3	4	5	6	7	8	
01	10	30	00	00	01	AF	09	
		regis	register		number of		CRC	
				registers				

Read

1	2	3	4	5	6	7	8
01	03	30	00	00	01	8B	0A
	read	register		number of		CRC	
				regist	ers		

Response:

1	2	3	4	5	6	7	
01	03	02	00	08	B9	82	
		byte	data		CRC		

Data values :

Data	Function
0000	Cs-Rs
0001	Cs-D
0002	Cp-Rp
0003	Cp-D
0004	Lp-Rp
0005	Lp-Q
0006	Ls-Rs
0007	Ls-Q
0008	Rs-Q
0009	Rp-Q
000A	R-X
000B	DCR
000C	Z-r
000D	Z-d
000E	Z-D
000F	Z-Q

12.3.2 LCR Range Register [3001H]

Write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	01	00	01	02	00	01	56	42
	write	regis	ter	number of		byte	data		CR	С
				regist	ters					

Response:

1	2	3	4	5	6	7	8
01	10	30	01	00	01	5F	09
		register		number of		CRC	
				regist	ers		

Read

1	2	3	4	5	6	7	8
01	03	30	01	00	01	DA	СА
	read	register		number of		CRC	
				regist	ers		

Response:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	data		CF	ર૦

Data values :

Data	Function	Description
0000	Range 0	100kΩ
0001	Range 1	30kΩ
0002	Range 2	10kΩ
0003	Range 3	3kΩ
0004	Range 4	1kΩ
0005	Range 5	300Ω
0006	Range 6	100Ω
0007	Range 7	30Ω
8000	Range 8	10Ω

12.3.3 Range Mode Register [3002H]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	02	00	01	02	00	01	56	71
	write	regis	ter	numbe regist	er of ters	byte	dat	а	CR	С

Response:

1	2	3	4	5	6	7	8
01	10	30	02	00	01	AF	09
		register		number of		CRC	
				regist	ters		

Read

1	2	3	4	5	6	7	8
01	03	30	02	00	01	2A	CA

	read	register		number of registers		CRC	
Respons	e:						
1	2	3	4	5	6	7	
01	03	02	00	01	79	84	

	••		••			
		byte	data		CRC	
Data valu	ues :					

Data	Function	Description
0000	Manual range	
0001	Auto range	
0002	Nominal	Select range based on
		nominal value

12.3.4 Measurement Speed Register [3003H]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	03	00	01	02	00	01	57	A0
	write	regis	ter	numbe	er of	byte	dat	а	CR	С
				regist	ters					

Response:

1	2	3	4	5	6	7	8
01	10	30	03	00	01	FE	С9
		regis	ter	numbe	er of	CR	с
				regist	ters		

Read

1	2	3	4	5	6	7	8
01	03	30	03	00	01	7B	0A
	read	regis	ter	number of		CRC	
				regist	ers		

Response:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	data		CF	RC

Data values :

Data	Function	Description
0000	Slow speed	
0001	Invalid	This value is reserved
0002	Medium speed	
0003	Fast speed	

12.3.5 Averaging Factor Register [3004H]

• Write

1	2	3	4	5	6	7	8	9	10	11

01	10	30	04	00	01	02	00	02	16	16
	write	regis	ter	numbe regist	er of ers	byte	dat	а	CR	0

Response:

1	2	3	4	5	6	7	8
01	10	30	04	00	01	4F	08
		regis	ter	number of		CR	С
				regist	ers		

Read

1	2	3	4	5	6	7	8
01	03	30	04	00	01	CA	СВ
	read	regis	ter	numbe	er of	CRC	
				regist	ters		

Response:

1	2	3	4	5	6	7
01	03	02	00	02	39	85
		byte	data		CF	RC

Data values :

Data	Function		Description
0001~0100	average	value	average value 0=average
	0~256		value 1

12.3.6 Trigger Mode Register [3005H]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	05	00	01	02	00	02	17	С7
	write	regis	ter	numbe	er of	byte	dat	а	CR	С
				regist	ters					

Response:

1	2	3	4	5	6	7	8
01	10	30	05	00	01	1E	C8
		register		number of		CRC	
				regist	ters		

Read

1	2	3	4	5	6	7	8
01	03	30	05	00	01	9B	0B
	read	register		number of		CRC	
				regist	ers		

Response:

1	2	3	4	5	6	7	
01	03	02	00	02	39	85	
		byte	data		CRC		

Data values :

Data	Function	Description

0000	Internal trigger	
0001	Manual trigger	Use Trigger key
0002	External trigger	Handler trigger
0003	Remote trigger	SCPI trigger

12.3.7 Measurement Frequency Register [3006H-3007H]

• Write [1kHz: 1000 = 44 7A 00 00]

1	2	3	4	5	6	7	8~11	12	13
01	10	30	06	00	02	04	44 7A 00 00	12	AD
	write	regis	ter	numbe regist	er of ters	byte	data	CR	С

Response:

1	2	3	4	5	6	7	8
01	10	30	06	00	02	AE	С9
		register		number of		CRC	
				registers			

Read

1	2	3	4	5	6	7	8
01	03	30	06	00	02	CF	1A
	read	regis	ter	numbe regist	er of ers	CRC	

Response:

1	2	3	4~7	8	9
01	03	04	44 7A 00 00	CF	1A
		byte	data	CRC	

12.3.8 Level Register [3008H-3009H]

• Write [1V: 1.00 = 3F 80 00 00]

1	2	3	4	5	6	7	8~11	12	13
01	10	30	08	00	02	04	3F 80 00 00	EB	B4
	write	regis	ter	numbe	er of	byte	data	CR	C
				regist	registers				

Response:

1	2	3	4	5	6	7	8
01	10	30	08	00	02	FF	09
		regis	ter	numbe regist	er of ærs	CRC	

Read

1	2	3	4	5	6	7	8
01	03	30	08	00	02	7A	CA
	read	regis	ter	numbe regist	er of ers	CRC	

Response:

•					
1	2	3	4~7	8	9

01	03	04	3F 80 00 00	F7	CF	
		bvte	data	CF	RC	

Note: The following situations will return an error

5	
Test Condition	Description
<correction></correction>	Error in operation
page	
<list sweep=""> page</list>	Error in operation
Level is current state	Error in operation
Function : DCR	Error in operation

12.3.9 DCR Range Register [300AH]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	0A	00	01	02	00	01	97	3A
	write	regis	ter	number of		byte	dat	а	CR	C
				regist	ters					

Response:

1	2	3	4	5	6	7	8
01	10	30	0A	00	01	2E	СВ
		register		number of		CRC	
				registers			

• Read

1	2	3	4	5	6	7	8
01	03	30	0A	00	01	AB	08
	read	register		number of		CRC	
				regist	ers		

Response:

1	2	3	4	5	6	7
01	03	02	00	04	B9	87
		byte	data		CF	RC

Data values :

Data	Function	Description
0000	Range 0	100kΩ
0001	Range 1	30kΩ
0002	Range 2	10kΩ
0003	Range 3	3kΩ
0004	Range 4	1kΩ
0005	Range 5	300Ω
0006	Range 6	100Ω
0007	Range 7	30Ω
0008	Range 8	3Ω

12.3.10 Startup File Recall Register [300CH]

Write
Modbus (RTU) Command 109

1	2	3	4	5	6	7	8	9	10	11
01	10	30	0C	00	01	02	00	01	FA	C8
	write	regis	ter	numbe	er of	byte	dat	а	CRO	С
				regist	ters					

Response:

1	2	3	4	5	6	7	8
01	10	30	0C	00	01	CE	СА
		register		number of		CR	С
				regist	ters		

Read

1	2	3	4	5	6	7	8
01	03	30	0C	00	01	4B	09
	read	register		number of		CRC	
				registers			

Response:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	data		CF	RC

Data values :

Data	Function	Description
0000	File 0	Default setting
0001	Current file	

12.3.11 Auto Save [300DH]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	0D	00	01	02	00	01	56	8E
	write	regis	ster	numbe	er of	byte	dat	а	CR	С
				regist	ters					

Response:

1	2	3	4	5	6	7	8
01	10	30	0D	00	01	9F	0A
		register		number of		CRC	
				regist	ters		

Read

1	2	3	4	5	6	7	8
01	03	30	0D	00	01	79	84
	read	regis	register		number of		
				registers			

Response:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	data		CF	RC

Data values :

Data	Function	Description
0000	OFF	Default setting
0001	ON	

12.3.12 System Language Setting [300EH]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	30	0E	00	01	02	00	01	56	BD
	write	regis	ter	numbe regist	er of ters	byte	data		CR	C

Response:

1	2	3	4	5	6	7	8
01	10	30	0E	00	01	6F	0A
		register		number of		CRC	
				registers			

Read

1	2	3	4	5	6	7	8
01	03	30	0E	00	01	EA	С9
	read	regis	ter	numbe regist	er of ers	CRC	

Response:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	data		CF	RC

Data values :

Data	Function	Description
0000	English	
0001	Chinese	

12.3.13 Test Current Register [3010H-3011H]

• Write [1mA: 0.001 = 3A 83 12 6F]

1	2	3	4	5	6	7	8~11	12	13
01	10	30	10	00	02	04	3A 83 12 6F	17	1E
	write	regis	ter numbe		er of	byte	Data (1mA)	CR	С
				regist	ters				

Response:

1	2	3	4	5	6	7	8
01	10	30	10	00	02	4F	0D
		register		number of		CR	С
				regist	registers		

Note: The following situations will return an error

Test Condition	Description
<correction> page</correction>	Error in operation

<list sweep=""> page</list>	Error in operation
Function : DCR	Error in operation
Level value exceeds	Data error
specification value	
Read	

• Rea	u						
1	2	3	4	5	6	7	8
01	03	30	10	00	02	CA	CE
	read	regis	register		er of	CRC	
				regist	ters		

Response:

1	2	3	4~7	8	9
01	03	04	3A 83 12 6F	4B	8F
		byte	data 1mA	CRC	

Note: The following situations will return an error

Test Condition	Description
<correction> page</correction>	Error in operation
<list swep=""> page</list>	Error in operation
Level is voltage state	Error in operation
Function : DCR	Error in operation

Note: The current level is not current mode, or an operation error is returned when the measurement parameter is DCR.

12.3.14 DC Bias Register [3012H-3013H]

•	Write	1V∙	ЗF	80	00.00
•	VVIILE	тν.	31	00	00 00

1	2	3	4	5	6	7	8~11	12	13
01	10	30	12	00	02	04	3F 80 00 00	2A	87
	write	regis	ter	ter numbe		byte	data (1V)	CR	С
				regist	registers				

Response:

1	2	3	4	5	6	7	8
01	10	30	12	00	02	EE	CD
		register		number of		CRC	
				registers			

Read

1	2	3	4	5	6	7	8
01	03	30	12	00	02	6B	0E
	read	register		number of		CRC	
				registers			

Response:

1	2	3	4~7	8	9
01	03	04	00 00 00 00	FA	33
		byte	data	CF	RC

12.4 Comparator Setting

The comparator parameter register address starts at 3100.

12.4.1 Comparator Status Register [3100H]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	31	00	00	01	02	00	01	47	53
	write	regis	ter	number of		byte	data		CR	С
				registers						

Response:

1	2	3	4	5	6	7	8
01	10	31	00	00	01	OF	35
		register		number of		CRC	
		-		registers			

Read

1	2	3	4	5	6	7	8
01	03	31	00	00	01	8A	F6
	read	register		number of		CRC	
				regisi	lers		

Response:

1	2	3	4	5	6	7	
01	03	02	00	01	79	84	
		byte	data		CRC		

Data values :

Data	Function	Description
0000	Comparator off	Default setting
0001	Comparator on	

12.4.2 Comparator Mode Register [3101H]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	31	01	00	01	02	00	01	46	82
	write	regis	ter	numbe regist	er of ters	byte	dat	а	CR	С

Response:

-							
1	2	3	4	5	6	7	8
01	10	31	01	00	01	5E	F5
		register		number of		CRC	
					registers		

Read

1	2	3	4	5	6	7	8	
01	03	31	01	00	01	DB	36	
	read	register		numbe	er of	CRC		

Posponso:								

Response	e.						
1	2	3	4	5	6	7	
01	03	02	00	01	79	84	
		byte	data		CRC		

Data values :

Data	Function	Description
0000	ABS compare	Absolute deviation comparison
0001	PER compare	Percent deviation comparison
0002	SEQ compare	Sequential comparison

Secondary Comparator (AUX) ON/OFF Register [3102H] 12.4.3

Write •

1	2	3	4	5	6	7	8	9	10	11
01	10	31	02	00	01	02	00	01	46	B1
	write	regis	ter	numbe regist	er of ters	byte	dat	а	CR	0

registers

Response:

1	2	3	4	5	6	7	8
01	10	31	02	00	01	AE	F5
		register		numbe	er of	CRC	
				registers			

Read

1	2	3	4	5	6	7	8	
01	03	31	02	00	01	2B	36	
	read	register		numbe	er of	CRC		
				registers				

Response:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	data		CF	RC

Data values :

Data	Function	Description
0000	Secondary	AUX OFF
	parameter	
	comparison off	
0001	Secondary	AUX ON
	parameter	
	comparison on	

Comparison Total Bins Register [3103H] 12.4.4

Write •

1	2	3	4	5	6	7	8	9	10	11
01	10	31	03	00	01	02	00	01	47	B1

	write	registe	r	number of	:	byte	d	ata	CRC
				registers	registers				
Respon	se:		·						
1	2	3	4	5	6		7	8	
01	10	31	03	00	01		FF	35	
		regis	ter	numb	number of		CR	С	
				regist	registers				
• Re	ad								
1	2	3	4	5	6		7	8	
01	03	31	03	00	0	1	7A	F6	
	read	regis	ter	numb	er of		CRC		
				regist	ters				
Respon	se:			•					
1	2	3	4	5	6	5	7		
01	03	02	00	01	7	9	84		
		byte	da	ata	a CR				

Data values :

Data	Function	Description
0000	Invalid	
0001~0009	Bin count	

12.4.5 Beep Register [3104H]

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	31	04	00	01	02	00	01	46	D7
	write	regis	ter	number of registers		byte	dat	а	CR	C

Response:

1	2	3	4	5	6	7	8
01	10	31	04	00	01	4E	F4
		register		numbe	er of	CRC	
				registers			

Read

1	2	3	4	5	6	7	8	
01	03	31	04	00	01	СВ	37	
	read	register		numbe	er of	CRC		
				regist	ers			

Response:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
		byte	data		CF	RC

Data values :

Data	Function	Description
0000	OFF	Turned off

0001	PASS	ОК beep
0002	FAIL	NG beep

12.4.6 Nominal Value Register [310AH-310BH]

The primary parameter nominal value uses 2 registers, 310A and 310B. Please note that reading 310B alone is invalid.

• Write

100E-9 (Single precision floating point number : 33D6BF95)

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	31	0A	00	02	04	33	D6	BF	95	74	A2
	write	regis	ter	numb	number of			data			CR	С
				regist	registers							

Response:

1	2	3	4	5	6	7	8
01	10	31	0A	00	02	6F	36
		regis	register		er of	CR	C
				registers			

Read

1	2	3	4	5	6	7	8	
01	03	31 0A		00	02	EA	F5	
	read	register		numbe	er of	CRC		
				regist	ers			

Response:

1	2	3	4	5	6	7	8	9
01	03	04	33	D6	BF	95	A4	D0
		byte		data 1	CR	C		

12.4.7

Secondary Parameter Limit Value Register [310CH-310FH]

The secondary parameter limit value starts from 310C, the lower limit uses 2 registers, and the upper limit uses 2 registers, total of 4 registers.

The lower and upper limits can be set separately, or simultaneously.

• Write

Lower limit : 0.001, Upper limit : 0.01

1	2	3~4	5	6	7	8~11	12~15	16~17
01	10	310C	00	02	04	3A 83 12 6F	3C 23 D7 0A	21 AE
						Lower limit	Upper limit	

Response:

•									
1	2	3	4	5	6		7	8	
01	10	31	0C	00	04	OF		35	
• re	ad								
1	2	3	4	5	6	7		8	
01	03	31	0C	00	04	8	3A	F6	
Respor	nse:								
1	2	3~4	5~8		9~12		13~1		

01	03	31 14	3A 83 12 6F	3C 23 D7 0A	51 61
			Lower limit	Upper limit	

12.4.8 Primary Parameter Limit Value Register [3110H-3133H]

There are total of 9 bins for primary parameter, the limit value starts from 3110, the lower limit of each bin uses 2 registers, and the upper limit uses 2 registers, total of 4 registers. The lower and upper limits can be set separately, or simultaneously.

• Write

BIN1

Lower limit : -10, Upper limit : 10

1	2	3~4	5	6	7		8~11			12~15		16	~17
01	10	3110	00	02	04	C	C1 20 00 00		41 20 00 () 00 00 C		05C
						L	.owe	er limit	U	pper lin	[·] limit		
Respor	nse:												
1	2		3	4		5		6		7	8		
01	10	3	1	10		00	0 04		8F		1	=	
• Re	ead												
1	2		3	4		5		6		7	8		
01	03	3	1	10		00	0 04		4	1B	30		
Respor	nse:											_	
1	2	3~	4		5~8		9~12		13~1		.4		
01	03	31	10	C1 2	20 00	00) 41 20 00		0	6C7	F		
				Lov	ver lin	nit		Upper lim	it				

12.5 **File Operation**

Since the AT381x settings are stored in the file, after the Modbus command is set, the data cannot be stored in the internal FlashRom in real time, which will cause the register data before the next power-on to be restored to the original file value.

Users can store all set values in the current or specified file with the file manipulation registers. Meanwhile, the specified file data can also be recalled into the setup register.

12.5.1 Save to Current File [4000H]

Send a value of 0001 to 4000 registers, the AT381x will perform a file write operation, and all settings will be saved to the current file.

This register cannot be read.

Write

1	2	3	4	5	6	7	8	9	10	11
01	10	40	00	00	01	02	00	01	26	54
	write	regis	ter	number of		byte	data		CRO	C
				regist	registers					

Response:

1	2	3	4	5	6	7	8
01	10	40	00	00	01	14	09

	register	number of	CRC
		registers	

Data values:

Data	Function	Description
0001	Allow to operate	Fixed value

12.5.2 Save to Specified File [4008H]

Send the file number to the 4008 register, the AT381x will perform the file write operation, all the settings will be saved to the specified file, and the specified file will be used as the current file of the system.

This register cannot be read.

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	40	08	00	01	02	00	09	26	DA
	write	regis	ter	numbe regist	er of ers	byte	dat	а	CR	С

Response :

1	2	3	4	5	6	7	8
01	10	40	00	00	01	95	СВ
		register		number of		CRC	
				registers			

Data values :

Data Function		Description			
0000~0009	File 0~9				

12.5.3 Reloading the Current File [4010H]

The fixed value 0001 to 4010 registers are sent and the AT381x loads the current file data into the system.

This register cannot be read.

• Write

1	2	3	4	5	6	7	8	9	10	11
01	10	40	10	00	01	02	00	01	24	C4
	write	regis	ter	number of		byte	data		CR	С
				registers						

Response :

1	2	3	4	5	6	7	8	
01	10	40	10	00	01	15	cc	
		register		numbe	er of	CRC		
				registers				

Data values :

Data	Function	Description
0001	Fixed value	

12.5.4 Load the Specified File [4018H]

Send the file number to the 4018 register, the AT381x will load the settings of the specified file

into the system, and the specified file will be used as the current file of the system. This register cannot be read.

Write

1	2	3	4	5	6	7	8	9	10	11
01	10	40	18	00	01	02	00	00	E4	4C
	write	regis	ter	numbe	er of	byte	data		CRO	C
				registers						

Response :

1	2	3	4	5	6	7	8
01	10	40	18	00	01	94	OE
		regis	register		number of		С
				registers			

Error response:

The file is empty and the AT381x will respond with an error code: 04

1	2	3	4	5
01	90	04	4D	С3
		Error code	CRC	

Data values :

Data	Function	Description
0000~0009	File 0~9	

12.6 Correction

12.6.1 Full-frequency Open Circuit Correction [5000H]

Writing 0001 to Register 5000 will cause the AT381x to begin an open-circuit full-frequency correction.

Since the correction process takes a few seconds, during this time, any write operation will be ignored and only the read operation will be open. After the correction is completed, the write command is normally opened.

Correction status can be obtained by reading the 5000 register during correction execution or after correction:

0000	Correction success
FFFF	Correction fail

- 0001 In correction
- Write

Please write a fixed value to the 5000 register: 00 01 Send: 01 10 5000 0001 02 0001 3795 Response: 01 10 5000 0001 10C9

Read

During the execution of correction, can determine whether correction is completed by reading the register data. Send: 01 03 5000 0001 950A Response: 01 03 02 FFFF B9F4 Returns FFFF, indicating that the correction failed

Note:

When performing correction, try not to read the correction status frequently. Continuous interrupts may cause the instrument to fail to perform correction.

Since the correction time is fixed, it is recommended that after the correction command is issued, after the host waits for the correction time to elapse, it will get the correction result.

12.6.2 Full-frequency Short-circuit Correction [5008H]

Writing 0001 to Register 5008 will cause the AT381x to begin an open-circuit full-frequency correction.

Since the correction process takes a few seconds, during this time, any write operation will be ignored and only the read operation will be open. After the correction is completed, the write command is normally opened.

Correction status can be obtained by reading the 5008 register during correction execution or after correction:

0000	Correction success
FFFF	Correction fail
0001	In correction

• Write

Please write a fixed value to the 5008 register: : 00 01 Send : 01 10 5008 0001 02 0001 36DD Response : 01 10 5008 0001 910B

Read

During the execution of correction, can determine whether correction is completed by reading the register data.

Send: 01 03 5008 0001 950A

Response : 01 03 02 FFFF B9F4

Returns FFFF, indicating that the correction failed

Note:

When performing correction, try not to read the correction status frequently. Continuous interrupts may cause the instrument to fail to perform correction.

Since the correction time is fixed, it is recommended that after the correction command is issued, after the host waits for the correction time to elapse, it will get the correction result.

12.6.3 Spot frequency Correction Setting [5010H-5015H]

The AT381x point frequency can be set by the register [point frequency 1:5010~5011], [point frequency 2:5012~5013] and [point frequency 3:5014~5015], where set to 00000000 means the point frequency is off.

Write

Point frequency 1 : 1kHz (Single precision floating point number : 44 7A 00 00)

		-	-									
1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	50	10	00	02	04	44	7A	00	00	3B	89
	write	regis	ter	numb	er of	byte		data			CR	С
				regis	ters							

Response :

1	2	3	4	5	6	7	8
01	10	50	10	00	02	51	0D
		register		numbe	er of	CR	С
				regist	ters		

Read

1	2	3	4	5	6	7	8
01	03	50	10	00	02	CF	1A
	read	register		numbe	er of	CRC	
				regist	registers		

Response :

1	2	3	4	5	6	7	8	9
01	03	04	44	7A	00	00	CF	1A
		byte		data	CR	С		

12.6.4 Spot Frequency Open Circuit Correction [5020H]

By writing the point frequency 0001~0003 to the register 5020, the AT381x will begin to perform an open-circuit point frequency correction.

After clearing is complete, you can get the clear status by reading the 5008 register:0000Correction successFFFFCorrection fail

• Write

Please write the point frequency to the 5020 register: 0001~0003, and execute the corresponding point frequency open circuit correction. Send: 01 10 5020 0001 02 0001 30F5

Response: 01 10 5020 0001 1103

Read

During the execution of correction, can determine whether correction is completed by reading the register data.

Send : 01 03 5020 0001 94C0 Response : 01 03 02 0000 B844

Returns FFFF, indicating that the correction failed

Note:

It takes time to perform correction of the point frequency. Please delay the time in the software to return the data.

Spot Frequency Short-Circuit Correction [5028H]

By writing the point frequency 0001~0003 to the register 5028, the AT381x will begin to perform an open-circuit point frequency correction.

After clearing is complete, you can get the clear status by reading the 5028 register:0000Correction successFFFFCorrection fail

Write

Please write the point frequency to the 5028 register: 0001~0003, and execute the corresponding point frequency short-circuit correction. Send: 01 10 5028 0001 02 0001 31BD Response: 01 10 5028 0001 90C1

Read

During the execution of correction, can determine whether correction is completed by reading the register data.

Send : 01 03 5028 0001 1502

Response : 01 03 02 FFFF B9F4

Returns FFFF, indicating that the correction failed

Note:

It takes time to perform correction of the point frequency. Please delay the time in the software to return the data.

12.7 System Setup

12.7.1 Instrument version number [0000H]

Read-only register, register [0000] ~ [0003] return the version number of the instrument:

1	2	3	4	5	6	7	8
01	03	00	10	00	02	4A	6D
	read	register		numbe	er of	CRC	
				regist	ers		

Response :

1	2	3	4	5	6	7	8	9
01	03	04	43	37	30	30	4A	6D
		byte		data ASC	CR	С		

The version number is ASCII value: for example, 43 37 30 30 = C700

12.6.5

13. Accuracy

This chapter includes the following:

- Accuracy
- Accuracy Factor

Measurement accuracy includes errors such as measurement stability, temperature coefficient, linearity, measurement repeatability, etc.

The accuracy of the instrument measurement must be checked under the following conditions:

Warm-up time: \geq 20 minutes.

After warming up, open circuit and short circuit correction are performed. The instrument is in Auto range.

13.1 Accuracy

I3.I.I Accuracy for L, C, R, |Z|

Accuracy for L, C, R, |Z|Ae are expressed by the following formula :

 $A_e = \pm [A + (K_a + K_b) \times 100] \times K_c$ [%]

A: Basic measurement accuracy

K_a : Impedance scale factor

K_b : Impedance scale factor)

K_c : Temperature factor

L , C Accuracy conditions : D_x (D measuring value) ${\leq}0.1$

R Accuracy conditions : Q_x (Q measuring value) ${\leq}0.1$

When Dx \ge 0.1, for L, C accuracy factor A_e should be multiplied by $\sqrt{1 + D_x^2}$

When $Q_x \ge 0.1$, for R accuracy factor A_e should be multiplied by $\sqrt{1+Q_x^2}$

13.1.2 D Accuracy

D 13.1.1 accuracy $\mathsf{D}_e\,$ are given by the following formula :

$$\mathsf{D}_{\mathsf{e}} = \pm \frac{A_e}{100}$$

The above formula is only used when $D_x \le 0.1$. When $D_x > 0.1$, D_e should be multiplied by (1+Dx)

13.1.3 Q Accuracy

Q accuracy are given by the following formula :

$$Q_{e} = \pm \frac{Q_{x} \times D_{e}}{1 \mp Q_{x} \times D_{e}}$$

Here, Q_x is the measured Q value. D_e is accuracy of D Condition of the above formula is $Q_x \times D_e < 1$

13.1.4 θ Accuracy

 $\boldsymbol{\theta}$ accuracy are given by the following formula :

 $\theta_e = \frac{180}{\pi} \times \frac{A_e}{100} \qquad [deg]$

13.1.5 R_p Accuracy

When D_x (measured D value) ≤ 0.1

 $R_{\rm p}$ accuracy are given by the following formula :

 $R_{p} = \pm \frac{R_{px} \times D_{e}}{D_{x} \mp D_{e}} \qquad [\Omega]$

Here, R_{px} is the measured Rp value [S].

 D_x is the measured D value [F].

D_e is accuracy of D.

13.1.6 R_s Accuracy

When D_x (measured D value) ≤ 0.1

Rs accuracy are given by the following formula :

[Ω]

$$R_{se} = X_x \times D_e$$
$$= 2\pi f L_x = \frac{1}{2\pi f C_x}$$

Here ,

Xx

 X_x is the measured X value [S].

C_x is the measured C value [F].

L_x is the measured L value [H].

D_e is accuracy of D

F is test frequency

13.2 Accuracy Factor

Figure 13-1 Basic measurement accuracy A

Figure 13 1 In the basic measurement accuracy, select a smaller value on the boundary line. The basic accuracy A value selection method is as follows:

0.05 ---- When 0.4Vrms \leq Vs \leq 1.2Vrms, the measurement speed is medium speed, slow-speed A value.

0.1 ---- When 0.4Vrms \leq Vs \leq 1.2Vrms, the measurement speed is A value of medium speed and fast speed.

When Vs<0.4Vrms or Vs>1.2Vrms, A value is calculated as: selected A according to the current measurement speed, and then the accuracy correction coefficient Ar is selected according to the current test signal voltage (see Figure 6-2), A is multiplied by Ar getting the current basic measurement accuracy A. Here, Vs is the test signal voltage.

Figure 13-2 Basic accuracy correction curve

Impedance scale factor Ka, Kb

-			, 110	-
	Speed From er		Ka	K _b
		f _m <10 0Hz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (1\times10^{-9})(1+\frac{70}{V_s})(1+\sqrt{\frac{100}{f_m}})$
	Medium 1 Medium 2 Slow	100H z≤fm ≤100 kHz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})$	$ Z_m (1\times 10^{-9})(1+\frac{70}{V_s})$
		fm>1 00kH z	$(\frac{1\times10^{-3}}{ Z_m })(2+\frac{200}{V_s})$	$ Z_m (3\times 10^{-9})(1+\frac{70}{V_s})$
		f _m <10 0Hz	$(\frac{2.5 \times 10^{-3}}{ Z_m })(1+\frac{400}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (2\times 10^{-9})(1+\frac{100}{V_s})(1+\sqrt{\frac{100}{f_m}})$
	Fast	100H z≤fm ≤100 kHz	$(\frac{2.5 \times 10^{-3}}{ Z_m })(1+\frac{400}{V_s})$	$ Z_m (2\times 10^{-9})(1+\frac{100}{V_s})$
		fm>1 00kH z	$(\frac{2.5 \times 10^{-3}}{ Z_m })(2 + \frac{400}{V_s})$	$ Z_m (6\times 10^{-9})(1+\frac{100}{V_s})$

In this table,

fm: test frequency [Hz]

Zm: impedance of the device under test $[\Box]$

Vs: test signal voltage [mVrms]

When the impedance is $< 500\Omega$, K_a is used, K_b is invalid.

When the impedance is $> 500\Omega$, K_b is used, and K_a is invalid.

Table 13-2 Te

Temperature factor Kc								
Temperature	5	8		18	3	28	38	
(℃)								
Кс	6	4	2		1	2	4	

Table 13-3Calibration interpolation factor Kf

f	
1	
.0003	
.0003	

Table 13-4

Test signal level	Cable length					
	lest signal level	0m	1m	2m		
	≤1.5Vrms	0	2.5×10 ⁻⁴ (1+0.05fm)	5×10 ⁻⁴ (1+0.05fm)		
	>1.5Vrms	0	2.5×10 ⁻³ (1+0.016fm)	5×10 ⁻³ (1+0.05fm)		

In the table, fm is the test signal frequency [kHz].

13.3 Performace Test

Each test shall be carried out under the following working conditions. Warm-up time: ≥ 20 minutes. After warming up, open circuit and short circuit correction are performed.

The AT381x range works at "AUTO" to select the correct measurement range.

This test is only included in the test of main specifications. Other parameters not listed, users can test under the specified conditions according to the specifications listed in this manual. If the test result is found to beyond scope, please contact our maintenance department immediately for repair.

13.3.1 Devices and Equipment Used for Performance Test

Table	13-5

Devices and equipment used for performance testing

No.	Equipment Na	me	Technical Requirements		
		100pF			
		1000pF			
1	Standard	10000pF	0.02%		
L L	capacitor	10nF	Loss D known		
		0.1µF			
		1uF			
		10Ω			
		100Ω			
2	AC standard	1kΩ	0.02%		
	resistor	10kΩ			
		100kΩ			
		100μΗ			
2	Standard	1mH	0.000/		
3	inductor	10mH	0.02%		
		100mH			
4	Frequency me	ter	(0~1000) MHz		
5	Digital multimeter		0.5%		

13.3.2 Function check

Each soft key, display, terminal, etc. of the instrument should work normally, and all functions are correct.

13.3.3 Test signal level accuracy test

Place the digital multimeter on the AC voltage range with one test probe connected to the HD side of the meter and the other test probe connected to ground. Change the level to: 0.1V, 0.3V, 1V should meet the requirements in Appendix A.

13.3.4 Frequency accuracy test

Connect the ground terminal of the frequency meter to the ground of the AT381x. The test terminal of the frequency meter is connected to HD terminal of the instrument test terminal. Change the frequency to: 20Hz, 100Hz, 1kHz, 10kHz, 100kHz, the reading of the frequency meter should meet the requirements in the specification.

13.3.5 Capacitance C, loss D accuracy test

ParameterCp-DTest frequency100Hz 1kHz 10kHz 100kHz test separatelyLevel1VRangeAUTOSpeedSlow

Short circuit and open circuit correction should be performed before testing. Connect standard capacitors 100pF, 1000pF, 1000pF, 10nF, 0.1uF, 1uF, change the frequency, the error capacitance C between the instrument reading and the standard value should be within the allowable error range specified in 6.1, and the loss D should be allowed in 6.1. Within the error range.

13.3.6 Inductance L accuracy test

Parameter	Ls-Q
Test frequency	100Hz 1kHz 10kHz 100kHz test separately
Level	1V
Range	AUTO
Speed	Slow

Short circuit and open circuit correction should be performed before testing. Connect the standard inductors 100μ H, 1mH, 10mH, 100mH, change the frequency, the error between the instrument reading and the standard value should be within the allowable error range specified in 6.1.

13.3.7 Impedance Z accuracy test

Parameter	Z-0
Test frequency	100Hz, 1kHz, 10kHz, 100kHz test separately
Level	1V
Range	AUTO
Speed	Slow
Short circuit and	open circuit correction should be performed before testing. Connect the AC

standard resistors 10Ω , 100Ω , $1k\Omega$, $10k\Omega$, $100k\Omega$, change the frequency, and the error between the instrument reading and the standard value should be within the allowable error range specified in 6.1.

14. Examples

This section describes the basic test procedures and basic LCR theory, and gives examples of how to make measurements. This chapter mainly explains:

- Basic measurement procedures
- Examples of measurement methods

14.1 Basic Measurement Procedure

The following flow chart shows the basic procedures used to measure the impedance of capacitors, inductors, resistors, and other components. Follow the procedures to perform impedance measurements while referring to the items noted to the right side of each step. Measurement flow chart

Figure 14-1

leasurement flow chart
Start
Cotus magazinament
Conditions: [FUNC] [LEVEL] [FREQ]
Connect the text fixture.
Setup the correction function. [Setup]-[CORRECTION]
Connect DUT
Perform measuement
END

14.2 Example

In this section, we take a measurement of a thin film ceramic capacitor as an example to show how to measure the capacitance value.

In this example, a ceramic capacitor is measured under the following conditions.

- Sample (DUT) Ceramic capacitor
- Measurement Conditions:
- Function: Cp-D
- Test Frequency: 100 kHz
- Test Signal Level: 1V
- Step 1Turn the AT381x ON, AT381x enter enter Meas pageStep 2Use the cursor key to select[FUNC]: Press soft key to select Cp-D[FREQ]: Input 100kHz[LEVEL]: Input 1VStep 3Connect the test fixture ATL601 to the AT381x.Step 4Run correction functionPress [Setup] keyPress [Setup] key to enter [CORRECTION] pageMove to the OPEN field by using the cursor keysSet [Open] to [On]

Don't connect any DUT to ATL601 as shown like this:

Press the [Open Full Correction] button until the progress box reaches 100% and disappears automatically. The word "Calibration finished" is displayed at the bottom of the screen. Move to the SHORT field by using the cursor keys.

Set [Short] to [On]

Connect a shorting bar to the ATL601.

Press the [Short Full Correction] button until the progress box reaches 100% and disappears automatically. The word "Calibration finished" is displayed at the bottom of the screen. Correction is finished, users does not need to perform point frequency correction.

Step 5 Press [Meas] key to return to <Meas Display> page

Step 6 Connect DUT to the test fixture as shown like this:

Step 7 Figure 14-2

View test results Capacitor test results

- · · I				
KMEAS D	DISPLAY> Cp-D	LOG RANGE	OFF [0] AUTO	MEAS SETUP
FREQ LEVEL	1.000 kHz 1.00 V	SPEED	SLOW	BIN No.
^{Cp}	6.0	64	94 PF	BIN COUNT
D	1.3	77	76	LIST SWEEP
Use Soft	Keys to Select			40.40
	I ENLARGE	- 51316	II I NET LUGN	13-09

15. Specification

This chapter includes the following information:

• Specifications

• Dimension

Accuracy is defined as meeting all of the following conditions. Temperature: $23^{\circ}C \pm 5^{\circ}C$ Humidity: $\leq 65\%$ R.H. Zeroing: Open and Short Correction Warm up time: >60 minutes A 1-year calibration cycle

Test signal level: 10% Test frequency accuracy: 0.01% Parameter Test Basic Accuracy: 0.05%

15.1 General Specification

Display :	True color TFT-LCD, Size: 3.5"							
Test Function :	Cs-Rs, Cs-D, Cp-F	Rp, Cp-D, Lp-						
	Rp, Lp-Q, Ls-Rs, L	Rp, Lp-Q, Ls-Rs, Ls-Q,						
	Rs-Q, Rp-Q, R-X,	DCR,						
	Z-θr, Z-θd, Z-D, Z	Z-Q						
Monitor Paramete	er: (2 sets)Z, D), Q. Vac, Iac, Δ, Δ%, θr, θd,R, X,	G, B, Y					
Basic Accuracy :	AT3818/AT3	816A/AT3817A/AT3810A	0.05% (within basic range)					
Test Frequency:								
	AT3818 :	10Hz ~ 300kHz continuous t	est frequency					
	AT3816A :	50Hz ~ 200kHz continuous t	est frequency					
	AT3816B :	50Hz ~ 200kHz 37 points						
	AT3817A:	50Hz ~ 100kHz continuous t	est frequency					
	AT3810A:	10Hz ~ 20kHz continuous tes	t frequency					
	AT3817D:	50Hz~100kHz, 10 points						
	Frequency rang	e(F)	Resolution					
	$10.0000Hz \le F \le$	99.9999Hz	0.0001Hz					
	$100.0000 Hz \leq F$	≤ 999.999Hz	0.001Hz					
	$1.00000 \text{ kHz} \leq \text{F}$	≤ 9.99999kHz	0.01Hz					
	$10.0000 \text{ kHz} \leq \text{F}$	≤ 99.9999kHz	0.1Hz					
	$100.000 \text{kHz} \leq \text{F}$	≤ 300.000kHz	1Hz					
	$10.0000 \text{kHz} \leq \text{F}$	≤ 99.9999kHz	0.1Hz					
	$100.000 \text{ kHz} \leq \text{F}$	≤ 300.000kHz	1Hz					

Frequency Accuracy : 0.01%

Typical frequency point: (AT3818, unit: Hz)									
10	12	15	20	25	30	40	50	60	80
100	120	150	200	250	300	400	500	600	800
1k	1.2k	1.5k	2k	2.5k	3k	4k	5k	6k	8k
10k	12k	15k	20k	25k	30k	40k	50k	60k	80k
100k	120k	150k	200k	250k	300k				

Typical frequency point: (AT3818, unit: Hz)

Test Level :

ACV: 10.00mV~2.00V, accuracy: 10%, CV mode accuracy: 6% ACI: 100.0µA~20.00mA, accuracy: 10%, CC mode accuracy: 6% @2Vmax DCR: ±1VDC (2Vpp) square wave, 3Hz maximum 0.033A (Max), output impedance 30Ω

Display digits: Primary parameter 6 digits; secondary parameter 6 digits, auxiliary parameter 6 digits

Display Range

Parameter	Display Range
L	0.00001nH ~ 9999.99H
С	0.00001pF ~ 999.999mF
R、X、Z	$0.00001\Omega \sim 99.9999 M\Omega$
B, G	0.01nS ~ 999.999S
D	0.00001 ~ 9.99999
Q	0.00001 ~ 999999.9
θd	-179.999° ~ 179.999°
θr	-3.14159 ~ 3.14159
%	-999.999% ~ 999.999%
θd	-179.99° ~ 179.99°
θr	-3.1416 ~ 3.1416
%	-99.999% ~ 999.99%

Measurement Speed :	Fast : 40 times/s , Medium : 10 times/s , Slow : 3 times/s	
Output Impedance :	30Ω 、 50Ω and 100Ω	
Max. Reading :	999999	
Ranging :	Auto, Hold and Nominal range.	
Equivalent Circuit :	Series and Parallel	
DC bias :	-2.50V~+2.50V	
Correction Function :	OPEN/SHORT	
Files :	10 sets of built-in files and USB storage.	
Beep Feature :	OFF/PASS/FAIL and HIGH/LOW tone.	
Trigger Mode :	Internal, Manual, External and Remote Trigger.	
Built-in Interface :	Handle) interface, RS232 interface	
Programming language :	SCPI and Modbus (RTU)	

Environment :	Indicator: Temperature 18℃ ~ 28℃ Humidity ≤ 65% RH
	Operation: Temperature 10°C ~ 40°C Humidity 10~80% RH
	Storage: Temperature -10℃~ 70℃ Humidity 10~90% RH

Power Supply :	90V-260VAC , 50Hz~60Hz
Fuse :	250V 3A Slow-Blow
Maximum rated power :	15VA
Weight :	3.5kg, net

15.2 Dimensions

Dimensions

-AT381x User's Guide-English ©2005-2019 Applent Instruments Ltd.